scholarly journals Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction.

1988 ◽  
Vol 85 (9) ◽  
pp. 3265-3269 ◽  
Author(s):  
B. Brenner
1998 ◽  
Vol 85 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Philip A. Wahr ◽  
Joseph M. Metzger

The chemomechanical coupling mechanism in striated muscle contraction was examined by changing the nucleotide substrate from ATP to CTP. Maximum shortening velocity [extrapolation to zero force from force-velocity relation ( V max) and slope of slack test plots ( V 0)], maximum isometric force (Po), power, and the curvature of the force-velocity curve [ a/Po(dimensionless parameter inversely related to the curvature)] were determined during maximum Ca2+-activated isotonic contractions of fibers from fast rabbit psoas and slow rat soleus muscles by using 0.2 mM MgATP, 4 mM MgATP, 4 mM MgCTP, or 10 mM MgCTP as the nucleotide substrate. In addition to a decrease in the maximum Ca2+-activated force in both fiber types, a change from 4 mM ATP to 10 mM CTP resulted in a decrease in V max in psoas fibers from 3.26 to 1.87 muscle length/s. In soleus fibers, V max was reduced from 1.94 to 0.90 muscle length/s by this change in nucleotide. Surprisingly, peak power was unaffected in either fiber type by the change in nucleotide as the result of a three- to fourfold decrease in the curvature of the force-velocity relationship. The results are interpreted in terms of the Huxley model of muscle contraction as an increase in f 1and g 1 coupled to a decrease in g 2(where f 1 is the rate of cross-bridge attachment and g 1 and g 2 are rates of detachment) when CTP replaces ATP. This adequately accounts for the observed changes in Po, a/Po, and V max. However, the two-state Huxley model does not explicitly reveal the cross-bridge transitions that determine curvature of the force-velocity relationship. We hypothesize that a nucleotide-sensitive transition among strong-binding cross-bridge states following Pi release, but before the release of the nucleotide diphosphate, underlies the alterations in a/Poreported here.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Masataka Kawai ◽  
Robert Stehle ◽  
Gabriele Pfitzer ◽  
Bogdan Iorga

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.


1976 ◽  
pp. 93-106 ◽  
Author(s):  
J. D. Potter ◽  
B. Nagy ◽  
J. H. Collins ◽  
J. C. Seidel ◽  
P. Leavis ◽  
...  

Author(s):  
S. Ebashi ◽  
Y. Nonomura ◽  
K. Kohama ◽  
T. Kitazawa ◽  
T. Mikawa

Sign in / Sign up

Export Citation Format

Share Document