Time-dependent measures consisting of rate of torque development (RTD), rate of velocity development (RVD), and rate of neuromuscular activation can be used to evaluate explosive muscular performance, which becomes critical when performing movements throughout limited ranges of motion (ROM). Using a HUMAC NORM dynamometer, seven males (27 ± 7 years) and six females (22 ± 3 years) underwent 8 weeks of maximal isometric dorsiflexion training 3 days/week. One leg was trained at 0° (short-muscle tendon unit (MTU) length) and the other at 40° of plantar flexion (long-MTU length). RTD and rate of neuromuscular activation were evaluated during 'fast' maximal isometric contractions. Power, RVD, and rate of neuromuscular activation were assessed during maximal isotonic contractions in four conditions (small (40° to 30° of plantar flexion) ROM at 10 and 50% MVC; large (40° to 0° of plantar flexion) ROM at 10 and 50% MVC) for both legs, pre- and post-training. Despite no change in rate of neuromuscular activation following training, peak power, RTD, and RVD increased at both MTU lengths (p < 0.05). Strong relationships (R2=0.73) were observed between RTD and peak power in the small ROM, indicating that fast time-dependent measures are critical for optimal performance when ROM is constrained. Meanwhile, strong relationships (R2=0.90) between RVD and power were observed at the 50% load, indicating that RVD is critical when limited by load and ROM is not confined. Maximal isometric dorsiflexion training can be used to improve time-dependent measures (RTD, RVD) to minimize power attenuation when ROM is restricted.