skinned fibers
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 8)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Nao Tokuda ◽  
Daiki Watanabe ◽  
Yuki Ashida ◽  
Iori Kimura ◽  
Azuma Naito ◽  
...  

Synergistic ablation (SA) is widely used to induce muscle hypertrophy in rodent studies. However, it has been demonstrated that SA-induced compensatory hypertrophy induces increases in maximum isometric force that are smaller in magnitude than the increase in muscle cross-sectional area, suggesting a reduction in the specific force production due to intrinsic contractile dysfunction in the hypertrophied fibers. Here, by using the mechanical skinned fibers, we investigated the mechanisms behind the reduction in specific force in the compensatory hypertrophied muscles. Rats had unilateral surgical ablation of the gastrocnemius and soleus muscles to induce the compensatory hypertrophy in the plantaris muscles. Two wk after surgery, the mean fiber diameter was increased by 19% in the SA group compared with the contralateral control (CNT) group. In contrast, compared with the CNT group, both the depolarization-induced force (−51%) and the Ca2+-activated maximum specific force (−32%) were markedly reduced in skinned fibers from the SA group. These deleterious functional alterations were accompanied by decreases in the amount of DHPRα1, RYR, junctophilin 1, and SH3 and cysteine-rich domain 3 (STAC3) in SA muscles. Thus, these data clearly show that SA induces not only an increase in skeletal muscle fiber hypertrophy but also leads to a reduction in the intrinsic contractile dysfunction due to the excitation–contraction uncoupling and impaired force-generating capacity.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Daiki Watanabe ◽  
Masanobu Wada

The purpose of this study is to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage at recovery phase after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers were prepared from the muscles excised 30 min after repeated high-intensity contractions. SR Ca2+ leakage was increased in the skinned fibers from stimulated muscles. Thereafter, SR Ca2+ leakage in skinned fibers was measured (1) under a continuously depolarized condition and (2) in the presence of nifedipine in the sealed transverse tubular system. In either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, 1 mM tetracaine (Tet) treatment, but not 3 mM Mg2+ (3 Mg) treatment, lessened SR Ca2+ leakage in stimulated fibers. Depolarization-induced force in skinned fibers was more greatly decreased by Tet treatment than by 3 Mg treatment (92% reduction in Tet versus 31% reduction in 3 Mg), whereas caffeine-induced force in skinned fibers was similarly decreased by either treatment (73% reduction in Tet versus 75% reduction in 3 Mg). This difference indicates that Tet exerts a greater inhibitory effect on the dihydropyridine receptor (DHPR) signal to ryanodine receptor (RYR) than 3 Mg, although their inhibitory effects on RYR are almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RYRs.


2021 ◽  
Vol 320 (5) ◽  
pp. C806-C821
Author(s):  
Daiki Watanabe ◽  
Masanobu Wada

The purpose of this study was to investigate the mechanism underlying sarcoplasmic reticulum (SR) Ca2+ leakage after in vivo contractions. Rat gastrocnemius muscles were electrically stimulated in vivo, and then mechanically skinned fibers and SR microsomes were prepared from the muscles excised 30 min after repeated high-intensity contractions. The mechanically skinned fibers maintained the interaction between dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs), whereas the SR microsomes did not. Interestingly, skinned fibers from the stimulated muscles showed increased SR Ca2+ leakage, whereas Ca2+ leakage decreased in SR microsomes from the stimulated muscles. To enhance the orthograde signal of DHPRs, SR Ca2+ leakage in the skinned fiber was measured 1) under a continuously depolarized condition and 2) in the presence of nifedipine. As a result, in either of the two conditions, SR Ca2+ leakage in the rested fibers reached a level similar to that in the stimulated fibers. Furthermore, the increased SR Ca2+ leakage from the stimulated fibers was alleviated by treatment with 1 mM tetracaine (Tet) but not by treatment with 3 mM free Mg2+ (3 Mg). Tet exerted a greater inhibitory effect on the DHPR signal to RyR than 3 Mg, although their inhibitory effects on RyR were almost similar. These results suggest that the increased Ca2+ leakage after muscle contractions is mainly caused by the orthograde signal of DHPRs to RyRs.


2021 ◽  
Vol 153 (3) ◽  
Author(s):  
Masataka Kawai ◽  
Robert Stehle ◽  
Gabriele Pfitzer ◽  
Bogdan Iorga

In this study, we aimed to study the role of inorganic phosphate (Pi) in the production of oscillatory work and cross-bridge (CB) kinetics of striated muscle. We applied small-amplitude sinusoidal length oscillations to rabbit psoas single myofibrils and muscle fibers, and the resulting force responses were analyzed during maximal Ca2+ activation (pCa 4.65) at 15°C. Three exponential processes, A, B, and C, were identified from the tension transients, which were studied as functions of Pi concentration ([Pi]). In myofibrils, we found that process C, corresponding to phase 2 of step analysis during isometric contraction, is almost a perfect single exponential function compared with skinned fibers, which exhibit distributed rate constants, as described previously. The [Pi] dependence of the apparent rate constants 2πb and 2πc, and that of isometric tension, was studied to characterize the force generation and Pi release steps in the CB cycle, as well as the inhibitory effect of Pi. In contrast to skinned fibers, Pi does not accumulate in the core of myofibrils, allowing sinusoidal analysis to be performed nearly at [Pi] = 0. Process B disappeared as [Pi] approached 0 mM in myofibrils, indicating the significance of the role of Pi rebinding to CBs in the production of oscillatory work (process B). Our results also suggest that Pi competitively inhibits ATP binding to CBs, with an inhibitory dissociation constant of ∼2.6 mM. Finally, we found that the sinusoidal waveform of tension is mostly distorted by second harmonics and that this distortion is closely correlated with production of oscillatory work, indicating that the mechanism of generating force is intrinsically nonlinear. A nonlinear force generation mechanism suggests that the length-dependent intrinsic rate constant is asymmetric upon stretch and release and that there may be a ratchet mechanism involved in the CB cycle.


2020 ◽  
Vol 21 (10) ◽  
pp. 3520
Author(s):  
Maki Yamaguchi ◽  
Masako Kimura ◽  
Tetsuo Ohno ◽  
Naoya Nakahara ◽  
Nobutake Akiyama ◽  
...  

X-ray diffraction and tension measurement experiments were conducted on rat left ventricular skinned fibers with or without “troponin-T treatment,” which exchanges the endogenous troponin T/I/C complex with exogenous troponin-T. These experiments were performed to observe the structural changes in troponin-T within a fiber elicited by contractile crossbridge formation and investigate the abnormality of hypertrophic cardiomyopathy-related troponin-T mutants. The intensity of the troponin reflection at 1/38.5 nm−1 was decreased significantly by ATP addition after treatment with wild-type or mutant troponin-T, indicating that crossbridge formation affected the conformation of troponin-T. In experiments on cardiac fibers treated with the hypertrophic cardiomyopathy-related mutants E244D- and K247R-troponin-T, treatment with K247R-troponin-T did not recruit contracting actomyosin to a greater extent than wild-type-troponin-T, although a similar drop in the intensity of the troponin reflection occurred. Therefore, the conformational change in K247R-troponin-T was suggested to be unable to fully recruit actomyosin interaction, which may be the cause of cardiomyopathy.


2020 ◽  
Vol 21 (4) ◽  
pp. 1244
Author(s):  
Haruo Sugi ◽  
Maki Yamaguchi ◽  
Tetsuo Ohno ◽  
Hiroshi Okuyama ◽  
Naoto Yagi

It is generally believed that during muscle contraction, myosin heads (M) extending from myosin filament attaches to actin filaments (A) to perform power stroke, associated with the reaction, A-M-ADP-Pi → A-M + ADP + Pi, so that myosin heads pass through the state of A-M, i.e., rigor A-M complex. We have, however, recently found that: (1) an antibody to myosin head, completely covering actin-binding sites in myosin head, has no effect on Ca2+-activated tension in skinned muscle fibers; (2) skinned fibers exhibit distinct tension recovery following ramp-shaped releases (amplitude, 0.5% of Lo; complete in 5 ms); and (3) EDTA, chelating Mg ions, eliminate the tension recovery in low-Ca rigor fibers but not in high-Ca rigor fibers. These results suggest that A-M-ADP myosin heads in high-Ca rigor fibers have dynamic properties to produce the tension recovery following ramp-shaped releases, and that myosin heads do not pass through rigor A-M complex configuration during muscle contraction. To obtain information about the structural changes in A-M-ADP myosin heads during the tension recovery, we performed X-ray diffraction studies on high-Ca rigor skinned fibers subjected to ramp-shaped releases. X-ray diffraction patterns of the fibers were recorded before and after application of ramp-shaped releases. The results obtained indicate that during the initial drop in rigor tension coincident with the applied release, rigor myosin heads take up applied displacement by tilting from oblique to perpendicular configuration to myofilaments, and after the release myosin heads appear to rotate around the helical structure of actin filaments to produce the tension recovery.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atsuki Fukutani ◽  
Tadao Isaka

AbstractMuscle force generated during shortening is instantaneously increased after active stretch. This phenomenon is called as stretch-shortening cycle (SSC) effect. It has been suggested that residual force enhancement contributes to the SSC effect. If so, the magnitude of SSC effect should be larger in the longer muscle length condition, because the residual force enhancement is prominent in the long muscle length condition. This hypothesis was examined by performing the SSC in the short and long muscle length conditions. Skinned fibers obtained from rabbit soleus (N = 20) were used in this study. To calculate the magnitude of SSC effect, the SSC trial (isometric-eccentric-concentric-isometric) and the control trial (isometric-concentric-isometric) were conducted in the short (within the range of 2.4 to 2.7 μm) and long muscle (within the range of 3.0 to 3.3 μm). The magnitude of SSC effect was calculated as the relative increase in the mechanical work attained during the shortening phase between control and SSC trials. As a result, the magnitude of SSC effect was significantly larger in the long (176.8 ± 18.1%) than in the short muscle length condition (157.4 ± 8.5%) (p < 0.001). This result supports our hypothesis that the magnitude of SSC effect is larger in the longer muscle length condition, possibly due to the larger magnitude of residual force enhancement.


Sign in / Sign up

Export Citation Format

Share Document