scholarly journals Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level.

1994 ◽  
Vol 91 (12) ◽  
pp. 5272-5276 ◽  
Author(s):  
J. A. Mindell ◽  
H. Zhan ◽  
P. D. Huynh ◽  
R. J. Collier ◽  
A. Finkelstein
2017 ◽  
Vol 372 (1726) ◽  
pp. 20160230 ◽  
Author(s):  
Kherim Willems ◽  
Veerle Van Meervelt ◽  
Carsten Wloka ◽  
Giovanni Maglia

Biological nanopores are a class of membrane proteins that open nanoscale water conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. In addition, a more recent nanopore application is the analysis of single proteins and enzymes. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here, we describe the approaches and challenges in nanopore enzymology. This article is part of the themed issue ‘Membrane pores: from structure and assembly, to medicine and technology’.


2013 ◽  
pp. 102-112
Author(s):  
Memed Duman ◽  
Andreas Ebner ◽  
Christian Rankl ◽  
Jilin Tang ◽  
Lilia A. Chtcheglova ◽  
...  

Biochemistry ◽  
2021 ◽  
Vol 60 (7) ◽  
pp. 494-499
Author(s):  
Ke Lu ◽  
Cuifang Liu ◽  
Yinuo Liu ◽  
Anfeng Luo ◽  
Jun Chen ◽  
...  

2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


Sign in / Sign up

Export Citation Format

Share Document