chromatin template
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rachael Emily Turner ◽  
Paul F Harrison ◽  
Angavai Swaminathan ◽  
Calvin A Kraupner-Taylor ◽  
Belinda J Goldie ◽  
...  

Most eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3’ untranslated region in order to regulate mRNA function. Here, we present a systematic analysis of 3’ end formation factors, which revealed 3’UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3’UTRs. We show that the anti-cancer drug cordycepin, 3’ deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites. Mycophenolic acid, a drug which reduces GTP levels and impairs RNA polymerase II (RNAP II) transcription elongation, promoted the usage of proximal sites and reversed the effects of cordycepin on alternative polyadenylation. Moreover, cordycepin-mediated usage of distal sites was associated with a permissive chromatin template and was suppressed in the presence of an rpb1 mutation, which slows RNAP II elongation rate. We propose that alternative polyadenylation is governed by temporal coordination of RNAP II transcription and 3’ end processing and controlled by the availability of 3’ end factors, nucleotide levels and chromatin landscape.


2021 ◽  
Author(s):  
Zidong Li ◽  
Helen L Fitzsimons ◽  
Tracy K Hale ◽  
Jeong Hyeon Park

EP400 is an ATP-dependent chromatin remodeling enzyme that has been implicated in DNA double-strand break repair and transcription regulation including Myc-dependent gene expression. We previously showed that the N-terminal domain of EP400 increases the efficacy of chemotherapeutic drugs against cancer cells. As the EP400 N-terminal-Like (EP400NL) gene resides next to the EP400 gene locus prompted us to investigate whether EP400NL also plays a similar role in epigenetic transcriptional regulation to the full-length EP400 protein. We found that EP400NL forms a human NuA4-like chromatin remodelling complex that lacks both the TIP60 histone acetyltransferase and EP400 ATPase. However, this EP400NL complex displays H2A.Z deposition activity on a chromatin template comparable to the human NuA4 complex, suggesting another associated ATPase such as BRG1 or RuvBL1/RuvBL2 catalyses the reaction. We also demonstrated that the transcriptional coactivator function of EP400NL is required for cMyc and IFNγ-mediated PD-L1 gene activation. Collectively, our studies show that EP400NL plays a role as a transcription coactivator for cMyc-mediated gene expression and provides a potential target to modulate PD-L1 expression in cancer immunotherapy.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


Author(s):  
Renato Paro ◽  
Ueli Grossniklaus ◽  
Raffaella Santoro ◽  
Anton Wutz

AbstractThe nucleus of a eukaryotic cell is a very busy place. Not only during replication of the DNA, but at any time in the cell cycle specific enzymes need access to genetic information to process reactions such as transcription and DNA repair. Yet, the nucleosomal structure of chromatin is primarily inhibitory to these processes and needs to be resolved in a highly orchestrated manner to allow developmental, organismal, and cell type-specific nuclear activities. This chapter explains how nucleosomes organize and structure the genome by interacting with specific DNA sequences. Variants of canonical histones can change the stability of the nucleosomal structure and also provide additional epigenetic layers of information. Chromatin remodeling complexes work locally to alter the regular beads-on-a-string organization and provide access to transcription and other DNA processing factors. Conversely, factors like histone chaperones and highly precise templating and copying mechanisms are required for the reassembly of nucleosomes and reestablishment of the epigenetic landscape after passage of activities processing DNA sequence information. A very intricate molecular machinery ensures a highly dynamic yet heritable chromatin template.


2020 ◽  
Author(s):  
Rachael E. Turner ◽  
Paul F. Harrison ◽  
Angavai Swaminathan ◽  
Calvin A. Kraupner-Taylor ◽  
Melissa J. Curtis ◽  
...  

ABSTRACTMost eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3’ untranslated region in order to regulate mRNA function. Here we present a systematic analysis of 3’ end formation factors, which revealed 3’UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3’UTRs. We show that the anti-cancer drug cordycepin, 3’ deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites. Mycophenolic acid, a drug which reduces GTP levels and impairs RNA polymerase II (RNAP II) transcription elongation, promoted the usage of proximal sites and reversed the effects of cordycepin on alternative polyadenylation. Moreover, cordycepin mediated usage of distal sites was associated with a permissive chromatin template and was suppressed in the presence of an rpb1 mutation, which slows RNAP II elongation rate. We propose that alternative polyadenylation is governed by temporal coordination of RNAP II transcription and 3’ end processing and controlled by the availability of 3’ end factors, nucleotide levels and chromatin landscape.


2020 ◽  
Vol 48 (22) ◽  
pp. 12648-12659
Author(s):  
Masatoshi Wakamori ◽  
Kohki Okabe ◽  
Kiyoe Ura ◽  
Takashi Funatsu ◽  
Masahiro Takinoue ◽  
...  

Abstract Eukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II- and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ∼3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1881
Author(s):  
Prim B. Singh ◽  
Stepan N. Belyakin ◽  
Petr P. Laktionov

The hallmarks of constitutive heterochromatin, HP1 and H3K9me2/3, assemble heterochromatin-like domains/complexes outside canonical constitutively heterochromatic territories where they regulate chromatin template-dependent processes. Domains are more than 100 kb in size; complexes less than 100 kb. They are present in the genomes of organisms ranging from fission yeast to human, with an expansion in size and number in mammals. Some of the likely functions of domains/complexes include silencing of the donor mating type region in fission yeast, preservation of DNA methylation at imprinted germline differentially methylated regions (gDMRs) and regulation of the phylotypic progression during vertebrate development. Far cis- and trans-contacts between micro-phase separated domains/complexes in mammalian nuclei contribute to the emergence of epigenetic compartmental domains (ECDs) detected in Hi-C maps. A thermodynamic description of micro-phase separation of heterochromatin-like domains/complexes may require a gestalt shift away from the monomer as the “unit of incompatibility” that determines the sign and magnitude of the Flory–Huggins parameter, χ. Instead, a more dynamic structure, the oligo-nucleosomal “clutch”, consisting of between 2 and 10 nucleosomes is both the long sought-after secondary structure of chromatin and its unit of incompatibility. Based on this assumption we present a simple theoretical framework that enables an estimation of χ for domains/complexes flanked by euchromatin and thereby an indication of their tendency to phase separate. The degree of phase separation is specified by χN, where N is the number of “clutches” in a domain/complex. Our approach could provide an additional tool for understanding the biophysics of the 3D genome.


2019 ◽  
Author(s):  
Masatoshi Wakamori ◽  
Kohki Okabe ◽  
Kiyoe Ura ◽  
Takashi Funatsu ◽  
Masahiro Takinoue ◽  
...  

ABSTRACTEukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II-, and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ~3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.


2019 ◽  
Author(s):  
David A. Garcia ◽  
Gregory Fettweis ◽  
Diego M. Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

ABSTRACTSingle-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the search and binding behaviour of these proteins in the nuclear environment. Dwell time distributions for most TFs have been described by SMT to follow bi-exponential behaviour. This is consistent with the existence of two discrete populations bound to chromatin in vivo, one non-specifically bound to chromatin (i.e. searching mode) and another specifically bound to target sites, as originally defined by decades of biochemical studies. However, alternative models have started to emerge, from multiple exponential components to power-law distributions. Here, we present an analytical pipeline with an unbiased model selection approach based on different statistical metrics to determine the model that best explains SMT data. We found that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution, blurring the temporal line between non-specific and specific binding, and suggesting that productive binding may involve longer binding events than previously thought. We propose a continuum of affinities model to explain the experimental data, consistent with the movement of TFs through complex interactions with multiple nuclear domains as well as binding and searching on the chromatin template.


2018 ◽  
Author(s):  
xuejun guo ◽  
Dong Yang ◽  
Xiangyuan Zhang

Although the phenomenal relationship between epigenetics and aging phenotypic changes is built up, an intrinsic connection between the epigenetics and aging requires to be theoretically illuminated. In this study, we propose epigenetic recording of varied cell environment and complex history could be an origin of cellular aging. Through epigenetic modifications, the environment and historical events can induce the chromatin template into activated or repressive accessible structure, thereby shaping the DNA template into a spectrum of chromatin states. The inner nature of diversity and conflicts born by cell environment and its historical events are hence recorded into the chromatin template. This could result in a dissipated spectrum of chromatin state and chaos of overall gene expressions. An unavoidable degradation of epigenome entropy, similar to <i>Shannon</i> entropy, would be consequently induced. The resulted disorder in epigenome, characterized by corrosion of epigenome entropy as reflected in chromatin template, can be stably memorized and propagated through cell divisions. Furthermore, hysteresis nature of epigenetics responding to emerging environment could exacerbate the degradation of epigenome entropy. Besides stochastic errors, we propose that epigenetics disorder and chaos derived from unordered environment and complex cell experiences play an essential role in epigenetic drift and the as-resulted cellular aging.


Sign in / Sign up

Export Citation Format

Share Document