scholarly journals A Regulatory Element in the Human Interleukin 2 Gene Promoter Is a Binding Site for the Zinc Finger Proteins Sp1 and EGR-1

1995 ◽  
Vol 270 (38) ◽  
pp. 22500-22506 ◽  
Author(s):  
Christine Skerka ◽  
Eva L. Decker ◽  
Peter F. Zipfel
1992 ◽  
Vol 12 (5) ◽  
pp. 1940-1949
Author(s):  
A D Keller ◽  
T Maniatis

The eukaryotic transcriptional repressor PRDI-BF1 contains five zinc fingers of the C2H2 type, and the protein binds specifically to PRDI, a 14-bp regulatory element of the beta interferon gene promoter. We have investigated the amino acid sequence requirements for specific binding to PRDI and found that the five zinc fingers and a short stretch of amino acids N terminal to the first finger are necessary and sufficient for PRDI-specific binding. The contribution of individual zinc fingers to DNA binding was investigated by inserting them in various combinations into another zinc finger-containing DNA-binding protein whose own fingers had been removed. We found that insertion of PRDI-BF1 zinc fingers 1 and 2 confer PRDI-binding activity on the recipient protein. In contrast, the insertion of PRDI-BF1 zinc fingers 2 through 5, the insertion of zinc finger 1 or 2 alone, and the insertion of zinc fingers 1 and 2 in reverse order did not confer PRDI-binding activity. We conclude that the first two PRDI-BF1 zinc fingers together are sufficient for the sequence-specific recognition of PRDI.


1990 ◽  
Vol 10 (9) ◽  
pp. 4826-4836 ◽  
Author(s):  
R A Horlick ◽  
G M Hobson ◽  
J H Patterson ◽  
M T Mitchell ◽  
P A Benfield

We have previously reported that the rat brain creatine kinase (ckb) gene promoter contains an AT-rich sequence that is a binding site for a protein called TARP (TA-rich recognition protein). This AT-rich segment is a positively acting regulatory element for the ckb promoter. A similar AT-rich DNA segment is found at the 3' end of the 5' muscle-specific enhancer of the rat muscle creatine kinase (ckm) gene and has been shown to be necessary for full muscle-specific enhancer activity. In this report, we show that TARP binds not only to the ckb promoter but also to the AT-rich segment at the 3' end of the muscle-specific ckm enhancer. A second, weaker TARP-binding site was identified in the ckm enhancer and lies at the 5' end of the minimal enhancer segment. TARP was found in both muscle cells (C2 and L6 myotubes) and nonmuscle (HeLa) cells and appeared to be indistinguishable from both sources, as judged by gel retardation and footprinting assays. The TARP-binding sites in the ckm enhancer and the ckb promoter were found to be functionally interchangeable. We propose that TARP is active in both muscle and nonmuscle cells and that it is one of many potential activators that may interact with muscle-specific regulators to determine the myogenic phenotype.


1990 ◽  
Vol 10 (9) ◽  
pp. 4826-4836
Author(s):  
R A Horlick ◽  
G M Hobson ◽  
J H Patterson ◽  
M T Mitchell ◽  
P A Benfield

We have previously reported that the rat brain creatine kinase (ckb) gene promoter contains an AT-rich sequence that is a binding site for a protein called TARP (TA-rich recognition protein). This AT-rich segment is a positively acting regulatory element for the ckb promoter. A similar AT-rich DNA segment is found at the 3' end of the 5' muscle-specific enhancer of the rat muscle creatine kinase (ckm) gene and has been shown to be necessary for full muscle-specific enhancer activity. In this report, we show that TARP binds not only to the ckb promoter but also to the AT-rich segment at the 3' end of the muscle-specific ckm enhancer. A second, weaker TARP-binding site was identified in the ckm enhancer and lies at the 5' end of the minimal enhancer segment. TARP was found in both muscle cells (C2 and L6 myotubes) and nonmuscle (HeLa) cells and appeared to be indistinguishable from both sources, as judged by gel retardation and footprinting assays. The TARP-binding sites in the ckm enhancer and the ckb promoter were found to be functionally interchangeable. We propose that TARP is active in both muscle and nonmuscle cells and that it is one of many potential activators that may interact with muscle-specific regulators to determine the myogenic phenotype.


2001 ◽  
Vol 13 (8) ◽  
pp. 1075-1084 ◽  
Author(s):  
Tadahiro Nishimura ◽  
Tadashi Narita ◽  
Emi Miyazaki ◽  
Tohru Ito ◽  
Norihiro Nishimoto ◽  
...  

2018 ◽  
Author(s):  
Jason D Fernandes ◽  
Maximilian Haeussler ◽  
Joel Armstrong ◽  
Kristof Tigyi ◽  
Joshua Gu ◽  
...  

KRAB Zinc Finger Proteins (KZNFs) are the largest and fastest evolving family of human transcription factors1,2. The evolution of this protein family is closely linked to the tempo of retrotransposable element (RTE) invasions, with specific KZNF family members demonstrated to transcriptionally repress specific families of RTEs3,4. The competing selective pressures between RTEs and the KZNFs results in evolutionary arms races whereby KZNFs evolve to recognize RTEs, while RTEs evolve to escape KZNF recognition5. Evolutionary analyses of the primate-specific RTE family L1PA and two of its KZNF binders, ZNF93 and ZNF649, reveal specific nucleotide and amino changes consistent with an arms race scenario. Our results suggest a model whereby ZNF649 and ZNF93 worked together to target independent motifs within the L1PA RTE lineage. L1PA elements eventually escaped the concerted action of this KZNF “team” over ∼30 million years through two distinct mechanisms: a slow accumulation of point mutations in the ZNF649 binding site and a rapid, massive deletion of the entire ZNF93 binding site.


1992 ◽  
Vol 12 (5) ◽  
pp. 1940-1949 ◽  
Author(s):  
A D Keller ◽  
T Maniatis

The eukaryotic transcriptional repressor PRDI-BF1 contains five zinc fingers of the C2H2 type, and the protein binds specifically to PRDI, a 14-bp regulatory element of the beta interferon gene promoter. We have investigated the amino acid sequence requirements for specific binding to PRDI and found that the five zinc fingers and a short stretch of amino acids N terminal to the first finger are necessary and sufficient for PRDI-specific binding. The contribution of individual zinc fingers to DNA binding was investigated by inserting them in various combinations into another zinc finger-containing DNA-binding protein whose own fingers had been removed. We found that insertion of PRDI-BF1 zinc fingers 1 and 2 confer PRDI-binding activity on the recipient protein. In contrast, the insertion of PRDI-BF1 zinc fingers 2 through 5, the insertion of zinc finger 1 or 2 alone, and the insertion of zinc fingers 1 and 2 in reverse order did not confer PRDI-binding activity. We conclude that the first two PRDI-BF1 zinc fingers together are sufficient for the sequence-specific recognition of PRDI.


Sign in / Sign up

Export Citation Format

Share Document