sequence requirements
Recently Published Documents


TOTAL DOCUMENTS

364
(FIVE YEARS 18)

H-INDEX

62
(FIVE YEARS 3)

mBio ◽  
2021 ◽  
Author(s):  
Zhizeng Sun ◽  
Timothy Palzkill

Polymyxin antibiotics are used as last-line antibiotics in treating infections caused by multidrug-resistant pathogens. However, widespread use of polymyxins has led to the emergence of resistance.


FEBS Letters ◽  
2021 ◽  
Author(s):  
Kyoko Furuita ◽  
Marina Hiraoka ◽  
Kentaro Hanada ◽  
Toshimichi Fujiwara ◽  
Chojiro Kojima

Mining ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 59-79
Author(s):  
Dingbang Liu ◽  
Yashar Pourrahimian

In-pit crushing and conveying (IPCC) systems have drawn attention to the modern mining industry due to the numerous benefits than conventional truck-and-shovel systems. However, the implementation of the IPCC system can reduce mining flexibility and introduce additional mining sequence requirements. This paper investigates the long-term production scheduling and the crusher relocation plan of open-pit mines using a semi-mobile IPCC system and high-angle conveyor. A series of candidate high-angle conveyor locations is generated around the pit limit, with a crusher located along each conveyor line. Each conveyor location is solved independently by an integer linear programming model for making production scheduling and crushing station decisions, aiming to maximize the net present value (NPV) considering the material handling and crushing station relocation costs. The production schedule with the highest NPV and the associated conveyor and crusher location is considered the optimum or near-optimum solution.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sebastian Kapell ◽  
Magnus E Jakobsson

Abstract Methylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale studies of the modification are hitherto absent. Here, we query ultra-comprehensive human proteome datasets to generate a resource of histidine methylation sites. In HeLa cells alone, we report 299 histidine methylation sites as well as 895 lysine methylation events. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.


2021 ◽  
Author(s):  
Sebastian Kapell ◽  
Magnus E. Jakobsson

ABSTRACTMethylation can occur on histidine, lysine and arginine residues in proteins and often serves a regulatory function. Histidine methylation has recently attracted notable attention through the discovery of the human histidine methyltransferase enzymes SETD3 and METTL9. There are currently no methods to enrich histidine methylated peptides for mass spectrometry analysis and large-scale analyses of the modification are hitherto absent. In the present study we query ultra-comprehensive proteomic datasets to generate a resource of histidine methylation sites in human cells. We use this resource to explore the frequency, localization, targeted domains, protein types and sequence requirements of histidine methylation and benchmark all analyses to methylation events on lysine and arginine. Our results demonstrate that histidine methylation is widespread in human cells and tissues and that the modification is over-represented in regions of mono-spaced histidine repeats. We also report colocalization of the modification with functionally important phosphorylation sites and disease associated mutations to identify regions of likely regulatory and functional importance. Taken together, we here report a system level analysis of human histidine methylation and our results represent a comprehensive resource enabling targeted studies of individual histidine methylation events.


2021 ◽  
Author(s):  
Martin Volek ◽  
Sofia Kolesnikova ◽  
Katerina Svehlova ◽  
Pavel Srb ◽  
Ráchel Sgallová ◽  
...  

Abstract G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.


2021 ◽  
Author(s):  
Martina Lenarčič Živković ◽  
Martin Gajarský ◽  
Kateřina Beková ◽  
Petr Stadlbauer ◽  
Lukáš Vicherek ◽  
...  

Abstract We recently showed that Saccharomyces cerevisiae telomeric DNA can fold into an unprecedented pseudocircular G-hairpin (PGH) structure. However, the formation of PGHs in the context of extended sequences, which is a prerequisite for their function in vivo and their applications in biotechnology, has not been elucidated. Here, we show that despite its ‘circular’ nature, PGHs tolerate single-stranded (ss) protrusions. High-resolution NMR structure of a novel member of PGH family reveals the atomistic details on a junction between ssDNA and PGH unit. Identification of new sequences capable of folding into one of the two forms of PGH helped in defining minimal sequence requirements for their formation. Our time-resolved NMR data indicate a possibility that PGHs fold via a complex kinetic partitioning mechanism and suggests the existence of K+ ion-dependent PGH folding intermediates. The data not only provide an explanation of cation-type-dependent formation of PGHs, but also explain the unusually large hysteresis between PGH melting and annealing noted in our previous study. Our findings have important implications for DNA biology and nanotechnology. Overrepresentation of sequences able to form PGHs in the evolutionary-conserved regions of the human genome implies their functionally important biological role(s).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Giedrius Gasiunas ◽  
Joshua K. Young ◽  
Tautvydas Karvelis ◽  
Darius Kazlauskas ◽  
Tomas Urbaitis ◽  
...  

Abstract Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.


2020 ◽  
Author(s):  
Rosemary A. Bayne ◽  
Uma Jayachandran ◽  
Aleksandra Kasprowicz ◽  
Stefan Bresson ◽  
David Tollervey ◽  
...  

AbstractThe conserved fungal RNA binding protein Ssd1, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and may act by suppressing translation of associated mRNAs. Previous studies identified motifs that are enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not well understood. Here we present the crystal structure of Ssd1 at 1.9 Å resolution. Active RNase II enzymes have a characteristic, internal RNA binding path, but in Ssd1 this is blocked by remnants of regulatory sequences. Instead, RNA binding activity has likely been relocated to the outer surface of the protein. Using in vivo crosslinking and cDNA analysis (CRAC), we identify Ssd1-RNA binding sites. These are strongly enriched in 5’UTRs of a subset of mRNAs encoding cell wall proteins. Based on these and previous analyses, we identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory elements in the RNase II family.


Author(s):  
Jacob Bourgeois ◽  
David W. Lazinski ◽  
Andrew Camilli

AbstractThe prokaryotic adaptive immune system CRISPR/Cas serves as defense against bacteriophage and invasive nucleic acid. A Type I-E CRISPR/Cas system has been detected in classical biotype isolates of Vibrio cholerae, the causative agent of the disease cholera. Experimental characterization of this system revealed a functional immune system that operates using a 5’-TT-3’ protospacer-adjacent motif (PAM) for interference. However, several designed spacers against the 5’-TT-3’ PAM do not interfere as expected, indicating further investigation of this system is necessary. In this study, we identified additional sequence requirements of a pyrimidine in the 5’ position of the spacer and purine in the complementary position of the protospacer using 873 unique spacers and 2267 protospacers mined from CRISPR arrays in deposited sequences of V. cholerae. We present bioinformatic evidence that during acquisition the protospacer purine is captured in the prespacer and that a 5’-RTT-3’ PAM is necessary for spacer acquisition. Finally, we demonstrate experimentally that a 5’-RTT-3’ PAM is necessary for CRISPR interference by designing and manipulating spacer and cognate PAMs in a plasmid conjugation assay and discover functional consequences of base pairing with the 5’ spacer pyrimidine in spacer efficacy.ImportanceBacterial CRISPR/Cas systems provide immunity by defending against phage and other invading elements. A thorough comprehension of the molecular mechanisms employed by these diverse systems will improve our understanding of bacteriophage-bacterial interactions and bacterial adaptation to foreign DNA. The Vibrio cholerae Type I-E system was previously identified in an extinct classical biotype and was partially characterized for its function. Here, using both bioinformatic and functional assays, we extend that initial study. We have found that the Type I-E system still exists in modern strains of V. cholerae. Furthermore, we defined additional sequence elements in both the CRISPR array and in target DNA that are required for immunity. CRISPR/Cas systems are now commonly used as precise and powerful genetic engineering tools. Knowledge of the sequences required for CRISPR/Cas immunity is a prerequisite for the effective design and experimental use of these systems. Our results greatly facilitate the effective use of one such system. Furthermore, we provide a publicly available script that assists in the detection and validation of CRISPR/Cas immunity requirements when such a system exists in any bacterial species.


Sign in / Sign up

Export Citation Format

Share Document