scholarly journals Subunit Assembly and Guanine Nucleotide Exchange Activity of Eukaryotic Initiation Factor-2B Expressed in Sf9 Cells

1997 ◽  
Vol 272 (19) ◽  
pp. 12359-12365 ◽  
Author(s):  
John R. Fabian ◽  
Scot R. Kimball ◽  
Nina K. Heinzinger ◽  
Leonard S. Jefferson
1994 ◽  
Vol 14 (7) ◽  
pp. 4546-4553
Author(s):  
K V Ramaiah ◽  
M V Davies ◽  
J J Chen ◽  
R J Kaufman

The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.


1994 ◽  
Vol 14 (7) ◽  
pp. 4546-4553 ◽  
Author(s):  
K V Ramaiah ◽  
M V Davies ◽  
J J Chen ◽  
R J Kaufman

The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.


1995 ◽  
Vol 309 (3) ◽  
pp. 1009-1014 ◽  
Author(s):  
B L Craddock ◽  
N T Price ◽  
C G Proud

A key control point in the initiation of protein synthesis in mammalian cells is the recycling of eukaryotic initiation factor (eIF)-2 by the guanine nucleotide exchange factor eIF-2B. In mammalian cells, eIF-2B is a complex of five different subunits termed epsilon, delta, gamma, beta and alpha. To clone cDNAs for the beta subunit of rabbit eIF-2B, amino acid sequence data was first obtained and used to design redundant oligonucleotide primers for use in PCR. PCR products were used to screen a rabbit liver cDNA library in lambda gt11 to obtain full-length cDNAs for eIF-2B beta. The cDNAs were sequenced completely on both strands and revealed an open reading frame encoding a predicted 351-amino acid polypeptide of 39.0 kDa. The molecular mass and pI (5.99) of the predicted protein agree well with the properties of eIF-2B beta purified from rabbit reticulocytes. In vitro transcription/-translation of the cDNAs gave rise to a product that migrated at a position indistinguishable from that of this subunit of the purified protein. The amino acid sequence shows a high degree of similarity to that of GCD7, a Saccharomyces cerevisiae protein thought to be equivalent to mammalian eIF-2B beta. Northern-blot analysis revealed a single major mRNA species for eIF-2B beta in each of the four rabbit tissues tested.


Nature ◽  
1982 ◽  
Vol 296 (5852) ◽  
pp. 93-95 ◽  
Author(s):  
Michael J. Clemens ◽  
Virginia M. Pain ◽  
Sie-Ting Wong ◽  
Edgar C. Henshaw

1998 ◽  
Vol 273 (21) ◽  
pp. 12841-12845 ◽  
Author(s):  
Scot R. Kimball ◽  
John R. Fabian ◽  
Graham D. Pavitt ◽  
Alan G. Hinnebusch ◽  
Leonard S. Jefferson

Sign in / Sign up

Export Citation Format

Share Document