scholarly journals Dominant-Negative c-Jun NH2-terminal Kinase 2 Sensitizes Renal Inner Medullary Collecting Duct Cells to Hypertonicity-induced Lethality Independent of Organic Osmolyte Transport

1998 ◽  
Vol 273 (2) ◽  
pp. 800-804 ◽  
Author(s):  
Paul A. Wojtaszek ◽  
Lynn E. Heasley ◽  
Gamini Siriwardana ◽  
Tomas Berl
1989 ◽  
Vol 256 (6) ◽  
pp. F1117-F1124 ◽  
Author(s):  
R. C. Harris

Urine is an abundant source of epidermal growth factor (EGF) and prepro-EGF has been localized to the thick ascending limb and distal convoluted tubule of the kidney. However, the functional role of EGF in the kidney is poorly understood. Determination of EGF receptors and functional responses to EGF in intrarenal structures distal to the site of renal EGF production may prove critical to our understanding of the role of this peptide. These studies were designed to investigate the response to EGF of rat inner medullary collecting duct cells in culture and in freshly isolated suspensions. Primary cultures of inner medullary collecting duct cells demonstrated equilibrium binding of 125I-labeled EGF at 4 and 23 degrees C. At 23 degrees C, there was 89 +/- 1% specific binding (n = 30). Scatchard analysis of 125I-EGF binding suggested the presence of both high-affinity binding with a dissociation constant (Kd) of 5 X 10(-10) M and maximal binding sites (Ro) of 2.7 X 10(3) binding sites/cell and low-affinity binding, with Kd of 8.3 X 10(-9) M and Ro of 1.8 X 10(4) binding sites/cell. Bound EGF, 68 +/- 3%, was internalized by 45 min. EGF binding was not inhibited by antidiuretic hormone, atrial natriuretic peptide or bradykinin at 23 degrees C, but there was concentration-dependent inhibition of binding by transforming growth factor-alpha. Incubation with phorbol myristate acetate decreased 125I-EGF binding in a concentration-dependent manner. 125I-EGF binding was also demonstrated in freshly isolated suspensions of rat inner medullary collecting duct cells.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (3) ◽  
pp. F333-F341 ◽  
Author(s):  
S. C. Borkan ◽  
A. Emami ◽  
J. H. Schwartz

Although heat stress proteins (HSPs) mediate thermotolerance, the cellular targets of thermal injury and mechanisms of acquired cytoprotection are unknown. To describe the metabolic effects of hyperthermia and the potential mechanisms of thermotolerance, the following were measured in inner medullary collecting duct cells after a 43 degrees C and/or a 50 degrees C thermal insult: 1) state III mitochondrial respiration (SIII MR), 2) glycolytic rate, 3) lactate dehydrogenase activity, 4) membrane permeability, and 5) HSP 72 content. Compared with controls incubated at 37 degrees C, cells heated to 50 degrees C showed a 30 and 50% reduction in glycolysis and SIII MR, respectively. After heating to 50 degrees C, the cell membrane remained intact and immunoreactive HSP 72 was not detected. In contrast, heating to 43 degrees C induced accumulation of HSP 72 and transiently increased both SIII MR and glycolysis. In addition, prior exposure to 43 degrees C completely prevented the fall in SIII MR and glycolysis anticipated with a subsequent 50 degrees C insult. Cytoprotection gradually diminished over several days and correlated with the disappearance of HSP 72. Preservation of oxidative and anaerobic metabolism associated with HSPs may be important in developing resistance to thermal injury.


Sign in / Sign up

Export Citation Format

Share Document