scholarly journals Impaired Organic Anion Transport in Kidney and Choroid Plexus of Organic Anion Transporter 3 (Oat3(Slc22a8)) Knockout Mice

2002 ◽  
Vol 277 (30) ◽  
pp. 26934-26943 ◽  
Author(s):  
Douglas H. Sweet ◽  
David S. Miller ◽  
John B. Pritchard ◽  
Yuko Fujiwara ◽  
David R. Beier ◽  
...  
2004 ◽  
Vol 286 (5) ◽  
pp. F972-F978 ◽  
Author(s):  
Destiny Sykes ◽  
Douglas H. Sweet ◽  
Simon Lowes ◽  
Sanjay K. Nigam ◽  
John B. Pritchard ◽  
...  

The choroid plexus actively transports endogenous, xenobiotic, and therapeutic compounds from cerebrospinal fluid to blood, thereby limiting their exposure to the central nervous system (CNS). Establishing the mechanisms responsible for this transport is critical to our understanding of basic choroid plexus physiology and will likely impact drug targeting to the CNS. We recently generated an organic anion transporter 3- (Oat3)-null mouse, which exhibited loss of PAH, estrone sulfate, and taurocholate transport in kidney and of fluorescein (FL) transport in choroid plexus. Here, we measured the uptake of four Oat3 substrates by choroid plexus from wild-type and Oat3-null mice to establish 1) the contribution of Oat3 to the apical uptake of each substrate and 2) the Na dependence of transport by Oat3 in the intact tissue. Mediated transport of PAH and FL was essentially abolished in tissue from Oat3-null mice. In contrast, only a 33% reduction in estrone sulfate uptake was observed in tissue from Oat3-null mice and, surprisingly, no reduction in taurocholate uptake could be detected. For PAH, FL, and estrone sulfate, all Oat3-mediated transport was Na dependent. However, estrone sulfate and taurocholate also exhibited additional mediated and Na-dependent components of uptake that were not attributed to Oat3, demonstrating the complexity of organic anion transport in this tissue and the need for further examination of expressed transporters and their energetics.


2004 ◽  
Vol 287 (5) ◽  
pp. F1021-F1029 ◽  
Author(s):  
S. Soodvilai ◽  
V. Chatsudthipong ◽  
K. K. Evans ◽  
S. H. Wright ◽  
W. H. Dantzler

We investigated the regulation of organic anion transport driven by the organic anion transporter 3 (OAT3), a multispecific OAT localized at the basolateral membrane of the renal proximal tubule. PMA, a PKC activator, inhibited uptake of estrone sulfate (ES), a prototypic substrate for OAT3, in a dose- and time-dependent manner. This inhibition was reduced by 100 nM bisindoylmaleimide I (BIM), a specific PKC inhibitor. The α1-adrenergic receptor agonist phenylephrine also inhibited ES uptake, and this effect was reduced by BIM. These results suggest that PKC activation downregulates OAT3-mediated organic anion transport. In contrast, epidermal growth factor (EGF) increased ES uptake following activation of MAPK. Exposure to PGE2 or dibutyryl (db)-cAMP also enhanced ES uptake. Stimulation produced by PGE2 and db-cAMP was prevented by the PKA inhibitor H-89, indicating that this stimulation required PKA activation. In addition, inhibition of cyclooxygenase 1 (COX1) (but not COX2) inhibited ES uptake. Furthermore, the stimulatory effect of EGF was eliminated by inhibition of either COX1 or PKA. These data suggest that EGF stimulates ES uptake by a process in which MAPK activation results in increased PGE2 production that, in turn, activates PKA and subsequently stimulates ES uptake. Interestingly, EGF did not induce upregulation immediately following phenylephrine-induced downregulation; and phenylephrine did not induce downregulation immediately after EGF-induced upregulation. These data are the first to show the regulatory response of organic anion transport driven by OAT3 in intact renal proximal tubules.


2007 ◽  
Vol 293 (4) ◽  
pp. F1332-F1341 ◽  
Author(s):  
Adam L. VanWert ◽  
Rachel M. Bailey ◽  
Douglas H. Sweet

The interaction of renal basolateral organic anion transporter 3 (Oat3) with commonly used pharmacotherapeutics (e.g., NSAIDs, β-lactams, and methotrexate) has been studied extensively in vitro. However, the in vivo role of Oat3 in drug disposition, in the context of other transporters, glomerular filtration, and metabolism, has not been established. Moreover, recent investigations have identified inactive human OAT3 polymorphisms. Therefore, this investigation was designed to elucidate the in vivo role of Oat3 in the disposition of penicillin G and prototypical substrates using an Oat3 knockout mouse model. Oat3 deletion resulted in a doubling of penicillin's half-life ( P < 0.05) and a reduced volume of distribution ( P < 0.01), together yielding a plasma clearance that was one-half ( P < 0.05, males) to one-third ( P < 0.001, females) of that in wild-type mice. Inhibition of Oat3 abolished the differences in penicillin G elimination between genotypes. Hepatic accumulation of penicillin was 2.3 times higher in male knockouts ( P < 0.05) and 3.7 times higher in female knockouts ( P < 0.001). Female knockouts also exhibited impaired estrone-3-sulfate clearance. Oat3 deletion did not impact p-aminohippurate elimination, providing correlative evidence to studies in Oat1 knockout mice that suggest Oat1 governs tubular uptake of p-aminohippurate. Collectively, these findings are the first to indicate that functional Oat3 is necessary for proper elimination of xenobiotic and endogenous compounds in vivo. Thus Oat3 plays a distinct role in determining the efficacy and toxicity of drugs. Dysfunctional human OAT3 polymorphisms or instances of polypharmacy involving OAT3 substrates may result in altered systemic accumulation of β-lactams and other clinically relevant compounds.


Sign in / Sign up

Export Citation Format

Share Document