anion transport
Recently Published Documents


TOTAL DOCUMENTS

885
(FIVE YEARS 87)

H-INDEX

62
(FIVE YEARS 5)

Author(s):  
Ethan N.W. Howe ◽  
Vai-Vai Tiffany Chang ◽  
Xin Wu ◽  
Mohamed Fares ◽  
William Lewis ◽  
...  
Keyword(s):  

Author(s):  
Wei Jiang ◽  
Tao Tong ◽  
Xuan Chen ◽  
Fenglin Deng ◽  
Fanrong Zeng ◽  
...  

2021 ◽  
Author(s):  
Ethan N.W. Howe ◽  
Vai-Vai Tiffany Chang ◽  
Xin Wu ◽  
Mohamed Fares ◽  
William Lewis ◽  
...  

Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.


2021 ◽  
Author(s):  
Ethan N.W. Howe ◽  
Vai-Vai Tiffany Chang ◽  
Xin Wu ◽  
Mohamed Fares ◽  
William Lewis ◽  
...  

Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6850
Author(s):  
Sozan Najib Abdullah ◽  
Georgia Mann ◽  
Lance J. Twyman

Being able to bind, select, and transport species is central to a number of fields, including medicine, materials, and environmental science. In particular, recognizing a specific species from one phase and transporting it across, or into another phase, has obvious applications in environ-mental science, for example, removal of unwanted or toxic materials from an aqueous or organic phase. In this paper, we describe an approach that uses a functionalized dendritic polymer to bind and transport a small anionic molecule across an organic phase (and between two aqueous phases). The design was based on encapsulation principles borrowed from nature, where anions are bound and transported by proteins that have specific sites within their globular ordered structures. For the work reported here, a globular dendritic polymer functionalized with an isophthalamide-based receptor was used to replace the protein structure and anion-binding site. Along with control experiments, the binding and transport properties of two functionalized HBPs were assessed using a Pressman U tube experiment. Both HBPs demonstrated an enhanced ability to bind and transport anions (when compared to the anion-binding site used in isolation). Furthermore, optimum binding and transport occurred when the smaller of the two HBPs were used. This supports our previous observations regarding the existence of a dense packed limit for HBPs.


Author(s):  
Michael L. Jennings

The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.


2021 ◽  
Author(s):  
Alexander Gilchrist ◽  
Patrick Wang ◽  
Israel Carreira-Barral ◽  
Daniel Alonso-Carrillo ◽  
Xin Wu ◽  
...  

The vesicular anion transport activity assay, which uses 8-hydroxypyrene-1,3,6-trisulfonic acid to monitor the internal pH of the vesicles (the HPTS assay), is a widely used technique for analysing the activity of anionophore facilitated transport across a phospholipid membrane. This methods paper describes the stepwise technique to conduct this transport assay, detailing both the perks and pitfalls of using this method to determine the activity of an anionophore and the transport mechanism.


2021 ◽  
Author(s):  
Mohamed Fares ◽  
Xin Wu ◽  
Daniel A. McNaughton ◽  
Alexander M. Gilchrist ◽  
William Lewis ◽  
...  

A series of fluorescent coumarin bis-ureas have been synthesised and their anion transport properties studied. The compounds function as highly potent HCl co-transport agents in lipid bilayer membranes.


Sign in / Sign up

Export Citation Format

Share Document