scholarly journals Stimulation of the Epithelial Sodium Channel (ENaC) by cAMP Involves Putative ERK Phosphorylation Sites in the C Termini of the Channel's β- and γ-Subunit

2006 ◽  
Vol 281 (15) ◽  
pp. 9859-9868 ◽  
Author(s):  
Li-Min Yang ◽  
Ralf Rinke ◽  
Christoph Korbmacher
Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 724-724
Author(s):  
Shyama M E Masilamani ◽  
Gheun-Ho Kim ◽  
Mark A Knepper

P170 The mineralocorticoid hormone, aldosterone increases renal tubule Na absorption via increases in the protein abundances of the α-subunit of the epithelial sodium channel (ENaC) and the 70 kDa form of the γ- subunit of ENaC (JCI 104:R19-R23). This study assesses the affect of dietary salt restriction on the regulation of the epithelial sodium channel (ENaC) in the lung and distal colon, in addition to kidney, using semiquantitative immunoblotting. Rats were placed initially on either a control Na intake (0.02 meq/day), or a low Na intake (0.2 meq/day) for 10 days. The low salt treated rats demonstrated an increase in plasma aldosterone levels at day 10 (control = 0.78 + 0.32 nM; Na restricted = 3.50 + 1.30 nM). In kidney homogenates, there were marked increases in the band density of the α-subunit of ENaC (286 % of control) and the 70 kDa form of γ-subunit of ENaC (262 % of control), but no increase in the abundance of the β-subunit of ENaC. In lung homogenates, there was no significant change in the band densities of the α, β, or γ subunits of ENaC. In distal colon, there was an increase in the band density of the β-subunit of ENaC (311 % of control) and an increase in both the 85 kDa (2355% of control) and 70 kDa (843 % of control) form of the γ subunit of ENaC in response to dietary Na restriction. However, there was no significant difference in the band density of the α-subunit of ENaC. These findings demonstrate tissue specific regulation of the three subunits of ENaC in response to dietary salt restriction.


2005 ◽  
Vol 280 (49) ◽  
pp. 40885-40891 ◽  
Author(s):  
My N. Helms ◽  
Lian Liu ◽  
You-You Liang ◽  
Otor Al-Khalili ◽  
Alain Vandewalle ◽  
...  

2010 ◽  
Vol 299 (4) ◽  
pp. F854-F861 ◽  
Author(s):  
Christopher J. Passero ◽  
Marcelo D. Carattino ◽  
Ossama B. Kashlan ◽  
Mike M. Myerburg ◽  
Rebecca P. Hughey ◽  
...  

Proteases activate the epithelial sodium channel (ENaC) by cleaving the large extracellular domains of the α- and γ-subunits and releasing peptides with inhibitory properties. Furin and prostasin activate mouse ENaC by cleaving the γ-subunit at sites flanking a 43 residue inhibitory tract (γE144-K186). To determine whether there is a minimal inhibitory region within this 43 residue tract, we generated serial deletions in the inhibitory tract of the γ-subunit in channels resistant to cleavage by furin and prostasin. We found that partial or complete deletion of a short segment in the γ-subunit, R158-N171, enhanced channel activity. Synthetic peptides overlapping this segment in the γ-subunit further identified a key 11-mer tract, R158-F168 (RFLNLIPLLVF), which inhibited wild-type ENaC expressed in Xenopus laevis oocytes, and endogenous channels in mpkCCD cells and human airway epithelia. Further studies with amino acid-substituted peptides defined residues that are required for inhibition in this key 11-mer tract. The presence of the native γ inhibitory tract in ENaC weakened the intrinsic binding constant of the 11-mer peptide inhibitor, suggesting that the γ inhibitory tract and the 11-mer peptide interact at overlapping sites within the channel.


2010 ◽  
Vol 21 (6) ◽  
pp. 1047-1058 ◽  
Author(s):  
Teresa M. Buck ◽  
Alexander R. Kolb ◽  
Cary R. Boyd ◽  
Thomas R. Kleyman ◽  
Jeffrey L. Brodsky

The epithelial sodium channel (ENaC) is composed of a single copy of an α-, β-, and γ-subunit and plays an essential role in water and salt balance. Because ENaC assembles inefficiently after its insertion into the ER, a substantial percentage of each subunit is targeted for ER-associated degradation (ERAD). To define how the ENaC subunits are selected for degradation, we developed novel yeast expression systems for each ENaC subunit. Data from this analysis suggested that ENaC subunits display folding defects in more than one compartment and that subunit turnover might require a unique group of factors. Consistent with this hypothesis, yeast lacking the lumenal Hsp40s, Jem1 and Scj1, exhibited defects in ENaC degradation, whereas BiP function was dispensable. We also discovered that Jem1 and Scj1 assist in ENaC ubiquitination, and overexpression of ERdj3 and ERdj4, two lumenal mammalian Hsp40s, increased the proteasome-mediated degradation of ENaC in vertebrate cells. Our data indicate that Hsp40s can act independently of Hsp70 to select substrates for ERAD.


2008 ◽  
Vol 586 (19) ◽  
pp. 4587-4608 ◽  
Author(s):  
Alexei Diakov ◽  
Katarzyna Bera ◽  
Marianna Mokrushina ◽  
Bettina Krueger ◽  
Christoph Korbmacher

2016 ◽  
Vol 292 (1) ◽  
pp. 375-385 ◽  
Author(s):  
Christine A. Klemens ◽  
Robert S. Edinger ◽  
Lindsay Kightlinger ◽  
Xiaoning Liu ◽  
Michael B. Butterworth

Sign in / Sign up

Export Citation Format

Share Document