proteolytic activation
Recently Published Documents


TOTAL DOCUMENTS

649
(FIVE YEARS 120)

H-INDEX

77
(FIVE YEARS 9)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 221-225
Author(s):  
Alex G. Johnson ◽  
Tanita Wein ◽  
Megan L. Mayer ◽  
Brianna Duncan-Lowey ◽  
Erez Yirmiya ◽  
...  

Ancient origin of cell death Gasdermins are cell death proteins in mammals that form membrane pores in response to pathogen infection. Johnson et al . report that diverse bacteria encode structural and functional homologs of mammalian gasdermins. Like their mammalian counterparts, bacterial gasdermins are activated by caspase-like proteases, oligomerize into large membrane pores, and defend against pathogen—in this case, bacteriophage—infection. Proteolytic activation occurs through the release of a short inhibitory peptide, and many bacterial gasdermins are lipidated to facilitate membrane pore formation. Pyroptotic cell death, a central component of mammalian innate immunity, thus has a shared origin with an ancient antibacteriophage defense system. —SMH


Endocrine ◽  
2022 ◽  
Author(s):  
Michael W. Pankhurst ◽  
Peter W. Dillingham ◽  
Alexia S. Peña

2021 ◽  
Vol 9 (4) ◽  
pp. 101-110
Author(s):  
N. D. Ushakova ◽  
E. M. Frantsiyants ◽  
D. A. Rozenko ◽  
N. N. Popova ◽  
E. A. Marykov ◽  
...  

Introduction. The development of a malignant tumor naturally affects renal function. During tumor formation, the renal tissue is destructed either by direct invasion into the parenchyma, or by mechanical change in the renal architecture caused by compression of the renal parenchyma, collecting ducts, tubules, and nephrons. In addition, a tumor can secrete biologically active substances, which have an indirect negative influence the functional state of the organ. Currently, it has been established that kallikrein-kinin and renin-angiotensin-aldosterone systems play an important role in the development of nephropathy of various genesis. At the same time, these systems' role in the development of renal function disorders in the setting of tumor damage has not yet been studied.Purpose of the study. To study changes in the components of the kallikrein-kinin and renin-angiotensin-aldosterone systems in the case of localized kidney cancer.Materials and methods. Forty-five patients diagnosed with T1N0M0 kidney cancer and 13 relatively healthy patients without cancer were examined. The determination of the components of the systems under study was carried out by the kinetic method after chromatography of blood plasma and urine using DEAE-Sephadex A-50 (Amersham Biosciences Corp., Sweden). The indices of angiotensin-1, renin, aldosterone, and cortisol were studied by an indirect method of radioimmunoassay. Statistical processing was carried out using Statistica 8.0 software (StatSoft Inc., IBM Corp., USA) by means of the Student-Fisher test (p < 0.05).Results. The development of kidney cancer is accompanied by a 2.3-fold increase in the activity of kallikrein and other trypsin proteases with a significant deficiency of their inhibitors (p < 0,05). Against this background, there is a 1.3-fold decrease in the cortisol/renin ratio from a 2.9-fold and 2.3-fold increase in the values of the renin/angiotensin-I and cortisol/angiotensin-I interaction ratios, respectively, compared with the normal values of these indicators (p < 0,05).Conclusions. Renal cell carcinoma is accompanied by trespassing of local metabolism with the formation of tubulointerstitial dysfunction and a shift of the proteinase-inhibitory balance towards proteolytic activation.


2021 ◽  
Vol 119 (1) ◽  
pp. e2111199119
Author(s):  
Shi Yu ◽  
Xu Zheng ◽  
Bingjie Zhou ◽  
Juan Li ◽  
Mengdan Chen ◽  
...  

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous loss worldwide. Although viral spike (S) protein binding of angiotensin-converting enzyme 2 (ACE2) has been established, the functional consequences of the initial receptor binding and the stepwise fusion process are not clear. By utilizing a cell–cell fusion system, in complement with a pseudoviral infection model, we found that the spike engagement of ACE2 primed the generation of S2′ fragments in target cells, a key proteolytic event coupled with spike-mediated membrane fusion. Mutagenesis of an S2′ cleavage site at the arginine (R) 815, but not an S2 cleavage site at arginine 685, was sufficient to prevent subsequent syncytia formation and infection in a variety of cell lines and primary cells isolated from human ACE2 knock-in mice. The requirement for S2′ cleavage at the R815 site was also broadly shared by other SARS-CoV-2 spike variants, such as the Alpha, Beta, and Delta variants of concern. Thus, our study highlights an essential role for host receptor engagement and the key residue of spike for proteolytic activation, and uncovers a targetable mechanism for host cell infection by SARS-CoV-2.


Author(s):  
Ferruh Artunc ◽  
Bernhard N. Bohnert ◽  
Jonas C. Schneider ◽  
Tobias Staudner ◽  
Florian Sure ◽  
...  

AbstractProteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2−/−) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2−/− mice. However, Habp2−/− mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2−/− mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.


iScience ◽  
2021 ◽  
pp. 103589
Author(s):  
Bailey Lubinski ◽  
Maureen H.V. Fernandes ◽  
Laura Frazier ◽  
Tiffany Tang ◽  
Susan Daniel ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wanqiu Li ◽  
Linlin Wang ◽  
Bradley M. Wierbowski ◽  
Mo Lu ◽  
Feitong Dong ◽  
...  

AbstractThe membrane protein Dispatched (Disp), which belongs to the RND family of small molecule transporters, is essential for Hedgehog (Hh) signaling, by catalyzing the extracellular release of palmitate- and cholesterol-modified Hh ligands from producing cells. Disp function requires Furin-mediated proteolytic cleavage of its extracellular domain, but how this activates Disp remains obscure. Here, we employ cryo-electron microscopy to determine atomic structures of human Disp1 (hDisp1), before and after cleavage, and in complex with lipid-modified Sonic hedgehog (Shh) ligand. These structures, together with biochemical data, reveal that proteolytic cleavage opens the extracellular domain of hDisp1, removing steric hindrance to Shh binding. Structure-guided functional experiments demonstrate the role of hDisp1–Shh interactions in ligand release. Our results clarify the mechanisms of hDisp1 activation and Shh morphogen release, and highlight how a unique proteolytic cleavage event enabled acquisition of a protein substrate by a member of a family of small molecule transporters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bernard Grillet ◽  
Karen Yu ◽  
Estefania Ugarte-Berzal ◽  
Rik Janssens ◽  
Rafaela Vaz Sousa Pereira ◽  
...  

ObjectivesTo explore posttranslational modifications (PTMs), including proteolytic activation, multimerization, complex formation and citrullination of gelatinases, in particular of gelatinase B/MMP-9, and to detect in gelatin-Sepharose affinity-purified synovial fluids, the presence of specific MMP proteoforms in relation to arthritis.MethodsLatent, activated, complexed and truncated gelatinase-A/MMP-2 and gelatinase B/MMP-9 proteoforms were detected with the use of zymography analysis to compare specific levels, with substrate conversion assays, to test net proteolytic activities and by Western blot analysis to decipher truncation variants. Citrullination was detected with enhanced sensitivity, by the use of a new monoclonal antibody against modified citrullines.ResultsAll MMP-9 and MMP-2 proteoforms were identified in archival synovial fluids with the use of zymography analysis and the levels of MMP-9 versus MMP-2 were studied in various arthritic diseases, including rheumatoid arthritis (RA). Secondly, we resolved misinterpretations of MMP-9 levels versus proteolytic activities. Thirdly, a citrullinated, truncated proteoform of MMP-9 was discovered in archival RA synovial fluid samples and its presence was corroborated as citrullinated hemopexin-less MMP-9 in a small prospective RA sample cohort.ConclusionSynovial fluids from rheumatoid arthritis contain high levels of MMP-9, including its truncated and citrullinated proteoform. The combination of MMP-9 as analyte and its PTM by citrullination could be of clinical interest, especially in the field of arthritic diseases.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 834
Author(s):  
David Burgin ◽  
Cindy Périer ◽  
Gavin Hackett ◽  
Mark Elliott ◽  
Daniel Kwan ◽  
...  

Botulinum neurotoxins (BoNTs) are notorious toxins and powerful agents and can be lethal, causing botulism, but they are also widely used as therapeutics, particularly to treat neuromuscular disorders. As of today, the commercial BoNT treatments available are from native A or B serotypes. Serotype F has shown efficacy in a clinical trial but has scarcely been used, most likely due to its medium duration of effect. Previously, the uniqueness of the light chain of the F7 subtype was identified and reported, showing an extended interaction with its substrates, VAMPs 1, 2 and 3, and a superior catalytic activity compared to other BoNT/F subtypes. In order to more extensively study the properties of this neurotoxin, we engineered a modified F7 chimera, mrBoNT/F7-1, in which all the regions of the neurotoxin were identical to BoNT/F7 except the activation loop, which was the activation loop from BoNT/F1. Use of the activation loop from BoNT/F1 allowed easier post-translational proteolytic activation of the recombinant protein without otherwise affecting its properties. mrBoNT/F7-1 was expressed, purified and then tested in a suite of in vitro and in vivo assays. mrBoNT/F7-1 was active and showed enhanced potency in comparison to both native and recombinant BoNT/F1. Additionally, the safety profile remained comparable to BoNT/F1 despite the increased potency. This new modified recombinant toxin F7 could be further exploited to develop unique therapeutics to address unmet medical needs.


2021 ◽  
Vol 22 (22) ◽  
pp. 12448
Author(s):  
Zsuzsa Csobán-Szabó ◽  
Bálint Bécsi ◽  
Saïd El Alaoui ◽  
László Fésüs ◽  
Ilma Rita Korponay-Szabó ◽  
...  

Transglutaminases are protein-modifying enzymes involved in physiological and pathological processes with potent therapeutic possibilities. Human TG4, also called prostate transglutaminase, is involved in the development of autoimmune and tumour diseases. Although rodent TG4 is well characterised, biochemical characteristics of human TG4 that could help th e understanding of its way of action are not published. First, we analysed proteomics databases and found that TG4 protein is present in human tissues beyond the prostate. Then, we studied in vitro the transamidase activity of human TG4 and its regulation using the microtitre plate method. Human TG4 has low transamidase activity which prefers slightly acidic pH and a reducing environment. It is enhanced by submicellar concentrations of SDS suggesting that membrane proximity is an important regulatory event. Human TG4 does not bind GTP as tested by GTP-agarose and BODIPY-FL-GTPγS binding, and its proteolytic activation by dispase or when expressed in AD-293 cells was not observed either. We identified several potential human TG4 glutamine donor substrates in the AD-293 cell extract by biotin-pentylamine incorporation and mass spectrometry. Several of these potential substrates are involved in cell–cell interaction, adhesion and proliferation, suggesting that human TG4 could become an anticancer therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document