Improved convergence and complexity analysis of Newton's method for solving equations

2007 ◽  
Vol 84 (1) ◽  
pp. 67-73
Author(s):  
Ioannis K. Argyros
1986 ◽  
Vol 6 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Michał Misiurewicz

AbstractWe study a class of maps of the real line into itself which are degree one liftings of maps of the circle and have discontinuities only of a special type. This class contains liftings of continuous degree one maps of the circle, lifting of increasing mod 1 maps and some maps arising from Newton's method of solving equations. We generalize some results known for the continuous case.


Author(s):  
Øystein Klemetsdal ◽  
Arthur Moncorgé ◽  
Olav Møyner ◽  
Knut-Andreas Lie

AbstractDomain decomposition methods are widely used as preconditioners for Krylov subspace linear solvers. In the simulation of porous media flow there has recently been a growing interest in nonlinear preconditioning methods for Newton’s method. In this work, we perform a numerical study of a spatial additive Schwarz preconditioned exact Newton (ASPEN) method as a nonlinear preconditioner for Newton’s method applied to both fully implicit or sequential implicit schemes for simulating immiscible and compositional multiphase flow. We first review the ASPEN method and discuss how the resulting linearized global equations can be recast so that one can use standard preconditioners developed for the underlying model equations. We observe that the local fully implicit or sequential implicit updates efficiently handle the local nonlinearities, whereas long-range interactions are resolved by the global ASPEN update. The combination of the two updates leads to a very competitive algorithm. We illustrate the behavior of the algorithm for conceptual one and two-dimensional cases, as well as realistic three dimensional models. A complexity analysis demonstrates that Newton’s method with a fully implicit scheme preconditioned by ASPEN is a very robust and scalable alternative to the well-established Newton’s method for fully implicit schemes.


2012 ◽  
Vol 3 (2) ◽  
pp. 167-169
Author(s):  
F.M.PATEL F.M.PATEL ◽  
◽  
N. B. PANCHAL N. B. PANCHAL

2012 ◽  
Vol 220-223 ◽  
pp. 2585-2588
Author(s):  
Zhong Yong Hu ◽  
Fang Liang ◽  
Lian Zhong Li ◽  
Rui Chen

In this paper, we present a modified sixth order convergent Newton-type method for solving nonlinear equations. It is free from second derivatives, and requires three evaluations of the functions and two evaluations of derivatives per iteration. Hence the efficiency index of the presented method is 1.43097 which is better than that of classical Newton’s method 1.41421. Several results are given to illustrate the advantage and efficiency the algorithm.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rami Sihwail ◽  
Obadah Said Solaiman ◽  
Khairuddin Omar ◽  
Khairul Akram Zainol Ariffin ◽  
Mohammed Alswaitti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document