High accuracy difference schemes for a class of singular three space dimensional hyperbolic equations

1995 ◽  
Vol 56 (3-4) ◽  
pp. 185-198 ◽  
Author(s):  
R. K. Mohanty ◽  
Kochurani George ◽  
M. K. Jain
2005 ◽  
Vol 2005 (2) ◽  
pp. 183-213 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Pavel E. Sobolevskii

We consider the abstract Cauchy problem for differential equation of the hyperbolic typev″(t)+Av(t)=f(t)(0≤t≤T),v(0)=v0,v′(0)=v′0in an arbitrary Hilbert spaceHwith the selfadjoint positive definite operatorA. The high order of accuracy two-step difference schemes generated by an exact difference scheme or by the Taylor decomposition on the three points for the numerical solutions of this problem are presented. The stability estimates for the solutions of these difference schemes are established. In applications, the stability estimates for the solutions of the high order of accuracy difference schemes of the mixed-type boundary value problems for hyperbolic equations are obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Necmettin Aggez

We are interested in studying multidimensional hyperbolic equations with nonlocal integral and Neumann or nonclassical conditions. For the approximate solution of this problem first and second order of accuracy difference schemes are presented. Stability estimates for the solution of these difference schemes are established. Some numerical examples illustrating applicability of these methods to hyperbolic problems are given.


Sign in / Sign up

Export Citation Format

Share Document