An Elementary Derivation of the Distribution of the Maximum of a Certain Random Walk

Author(s):  
B.D. Bunday ◽  
R.E. Scraton
1976 ◽  
Vol 13 (04) ◽  
pp. 733-740
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn (x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G ∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


1976 ◽  
Vol 13 (4) ◽  
pp. 733-740 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution of the nth successive maximum of a random walk on the real line. Under conditions typical for complete exponential convergence, the decay of Gn (x) – limn→∞ Gn(x) is asymptotically equal to H(x) γn n–3/2 as n → ∞where γ < 1 and H(x) a function solely depending on x. For the case of drift to + ∞, G∞(x) = 0 and the result is new; for drift to – ∞we give a new proof, simplifying and correcting an earlier version in [9].


1975 ◽  
Vol 12 (02) ◽  
pp. 279-288 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn (x) be the distribution function of the maximum of the successive partial sums of independent and identically distributed random variables and G(x) its limiting distribution function. Under conditions, typical for complete exponential convergence, the decay of Gn (x) — G(x) is asymptotically equal to c.H(x)n −3/2 γn as n → ∞ where c and γ are known constants and H(x) is a function solely depending on x.


1976 ◽  
Vol 13 (3) ◽  
pp. 444-454 ◽  
Author(s):  
P. J. Green

For a left-continuous random walk, absorbing at 0, the joint distribution of the maximum and time to absorption is derived. A description of the tails of the distributions and a conditional limit theorem are obtained for the cases where absorption is certain.


1985 ◽  
Vol 17 (1) ◽  
pp. 85-99 ◽  
Author(s):  
H. E. Daniels ◽  
T. H. R. Skyrme

This paper discusses the joint distribution of the maximum and the time at which it is attained, of a random walk whose mean path is a curvilinear trend which itself has a maximum. A typical example of such a problem is the distribution of the maximum number of infectives present during the course of an epidemic. Another example where the random walk is constrained to terminate at 0 after a given time is provided by the distribution of the strength and breaking extension of a bundle of fibres.A diffusion approximation to the joint distribution is obtained for the general case of a Brownian bridge. In the commonest class of cases which includes the two examples mentioned, a certain integral equation has to be solved. Its solution enables the marginal distribution of the time to reach the maximum to be tabulated, and the marginal distribution of the maximum confirms the results previously obtained by Daniels (1974) and Barbour (1975). Of particular interest is the conditional expectation of the maximum for a given time of attainment which behaves asymmetrically.


1975 ◽  
Vol 12 (2) ◽  
pp. 279-288 ◽  
Author(s):  
N. Veraverbeke ◽  
J. L. Teugels

Let Gn(x) be the distribution function of the maximum of the successive partial sums of independent and identically distributed random variables and G(x) its limiting distribution function. Under conditions, typical for complete exponential convergence, the decay of Gn(x) — G(x) is asymptotically equal to c.H(x)n−3/2γn as n → ∞ where c and γ are known constants and H(x) is a function solely depending on x.


Sign in / Sign up

Export Citation Format

Share Document