A generalized Fourier transform and its use in Flamant's problem of the classical theory of elasticity

Author(s):  
K. Manivachakan ◽  
A. Chakrabarti
2010 ◽  
Vol 2010 (01) ◽  
pp. P01005 ◽  
Author(s):  
Giacomo Bormetti ◽  
Valentina Cazzola ◽  
Giacomo Livan ◽  
Guido Montagna ◽  
Oreste Nicrosini

1989 ◽  
Vol 33 (03) ◽  
pp. 214-220
Author(s):  
Paul C. Xirouchakis ◽  
George N. Makrakis

The behavior of a long elastic strip with an edge crack resting on a liquid foundation is investigated. The faces of the crack are opened by an applied pressure loading. The deformation of the strip is considered within the framework of the linear theory of elasticity assuming plane-stress conditions. Fourier transform techniques are employed to obtain integral expressions for the stresses and displacements. The boundary-value problem is reduced to the solution of a Fredholm integral equation of the second kind. For the particular case of linear pressure loading, the stress-intensity factor is calculated and its dependence is shown on the depth of the crack relative to the thickness of the strip. Application of the present results to the problem of flexure of floating ice strips is discussed.


Author(s):  
Krzysztof Kazimierczuk ◽  
Maria Misiak ◽  
Jan Stanek ◽  
Anna Zawadzka-Kazimierczuk ◽  
Wiktor Koźmiński

2021 ◽  
Author(s):  
Olga Hachay ◽  
Andrey Khachay

<p>In recent years, new models of continuum mechanics, generalizing the classical theory of elasticity, have been intensively developed. These models are used to describe composite and statistically heterogeneous media, new structural materials, as well as in complex massifs in mine conditions. The paper presents an algorithm for the propagation of longitudinal acoustic waves in the framework of active well monitoring of elastic layered block media with inclusions of hierarchical type of L-th rank. Relations for internal stresses and strains for each hierarchical rank are obtained, which constitute the non local theory of elasticity. The essential differences between the non local theory of elasticity and the classical one and the connection between them are investigated. A characteristic feature of the theory of media with a hierarchical structure is the presence of scale parameters in explicit or implicit form. This work focuses on the study of the effects of non locality and internal degrees of freedom, reflected in internal stresses, which are not described by the classical theory of elasticity and which can be potential precursors of the development of a catastrophic process in a rock massif. Thanks to the use of a model of a layered block medium with hierarchical inclusions, it is possible, using borehole acoustic monitoring, to determine the position of the highest values ​​of internal stresses and, with less effort, to implement the method of unloading the rock massif. If it is necessary to conduct short-term predictive monitoring of geodynamic regions and determine a more accurate position of the source of a dynamic phenomenon using borehole active acoustic observations, it is necessary to use the values ​​of the tensor of internal hierarchical stresses as a monitored parameter.</p>


Sign in / Sign up

Export Citation Format

Share Document