rock massif
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 88)

H-INDEX

5
(FIVE YEARS 2)

Author(s):  
Vyacheslav Yugay ◽  
Ali Mekhtiyev ◽  
Yelena Neshina ◽  
Bakhytkul Aubakirova ◽  
Raushan Aimagambetova ◽  
...  

This paper reports a study into designing an information-measuring system that could be used in coal mines that are dangerous in terms of the explosion of coal dust and methane gas. The results of reviewing technical advancements in the field of fiber-optic system development are given. To solve the set task, prototypes of a fiber-optic sensor of a new type and a hardware-software complex were constructed. The research aims to improve the safety of workers at coal enterprises. The result of the theoretical research has established that additional losses related to a micro bending should be taken into consideration while accounting for the effect of photoelasticity. The fundamental difference between the idea reported here and existing analogs is the development of a hardware-software complex capable of working with a single-mode optical fiber of great length with a significant noise level. The data processing unit is equipped with a television matrix and can analyze changes in the pixels of a light spot. The proposed system is quasi-distributed; it controls individual points within a rock massif. The designed hardware-software system provides high noise immunity of measuring channels when the external temperature changes. The research results helped develop an information-measuring system for monitoring the deformation and displacement of rock massif layers based on fiber-optic sensors, capable of operating in an explosive environment. The system makes it possible to control several layers located in the roof of the workings, while the fiber-optic sensor may contain two or three sensitive elements that are connected to different channels. With a sharp fluctuation in pressure and an increase in the displacement parameter, the system triggers a warning signal about the danger.


2021 ◽  
Vol 34 (04) ◽  
pp. 1448-1460
Author(s):  
Yevgeny B. Shevkun ◽  
Alexander V. Leshchinsky ◽  
Evgeny A. Shishkin ◽  
Yuri A. Lysak ◽  
Andrey Yu. Plotnikov

The level of deformation of the rock massif of a blasted slab must be planned in advance, depending on the required results of blasting. Thus the energy costs of barren rock overfilling as part of preparing for overburden excavation are inefficient. On the contrary, an increase in the blast energy spent on degrading and breaking the ore mass is an efficient measure of preparing for the excavation of mineral wealth. There are currently two methods used to determine the pre-destruction of a blasted rock massif. The first one is based on determining the number of strain waves passing through locations of borehole charges. However, this method fails to determine the preliminary rock destruction level. The second method is based on determining coefficients of the pre-destruction of a rock massif by these strain waves. The merit of this method is that it allows evaluating the quality pattern of the pre-destruction of a rock massif. The procedure of considering the fraction of energy of the strain waves, reflected by the shielding rock mass to the destructive amount of blasting charges and refracted to this destroyed rock, is proposed.


2021 ◽  
Vol 37 (3) ◽  
pp. 28-34
Author(s):  
V. Yu. Dovhal

Purpose of work. Determine the conditions of the side rocks stability in a coal massif with different ways of support coal-rock stratum to ensure safe working conditions for miners in the excavation areas of a coal mine with steep coal seams. To achieve this goal, laboratory studies were carried out on models of optical and equivalent materials. The modeling of the stability of side rocks in a coal-rock massif was carried out with the methods of support roadways with vertical timber setsand wooden crib supports: 4-point chock.On models made of optical materials in the analysis of the static field of the distribution of shear stresses in side rocks, the regularity of the change in hazardous manifestations of rock pressure, depending on the deformability of support structures, was recorded. On equivalent models of support structures, the deformation characteristics of experimental samples were determined and their effect on the integrity of the roof under the action of static loads was established. When using rigid support structures in the form of vertical timber sets made of wooden racks to protect sliding drifts, there is a deterioration in the stability of side rocks and destruction of the roof. When using flexible support structures in the form of wooden crib supports: 4-point chock, a smooth deflection of the roof and its integrity are observed. A decrease in the size of the stress concentration zone in the model of a coal-rock massif with workings after the compaction of flexible support structures located above the haul roadway, due to a change in their rigidity, when as a result of the convergence of side rocks, a smooth deflection is provided and the movement of the roof is limited. To ensure the stability of side rocks and development workings, as well as reduce the level of injuries of miners from landslides and collapses in the excavation areas of coal mines that develop steep seams, it is advisable to use flexible support structures, when using which, a smooth deflection of side rocks and their integrity in the mined-out area is ensured coal massif.


2021 ◽  
Vol 62 ◽  
pp. 47-57
Author(s):  
Abdoul Aboubakar ◽  
Bertille Illalie Manefouet ◽  
Landrie Sylvin Komguep ◽  
Emmanuel Tatchoum Talom ◽  
Clotaire Romaric Foueze ◽  
...  

Beka-Gotto is a village of Ngaoundal located in the Adamawa region (Cameroon). The present study is carried out to determine the physical and mechanical characteristics of the local rock massifs, in order to determine their possible uses in various fields of civil engineering. The methodology used consists of petrographic and geotechnical characterization of the different massifs. The rocks crop outas domes or slabs. The rock is light gray. Under the microscope, the rock presents a grainy microstructure composed of plagioclase, potassium feldspar, biotite and quartz. Zircon and opaque minerals represent the accessory phase. With this composition, rock is granodiorite. The geotechnical study, on the other hand, made it possible to understand that, on the physical level, the rock massif has very good properties. In fact, the specific weight on class 6/10 and 10/14 obtained has mean values of ​​2.73 and 2.68 kN/m3 respectively. While the apparent density obtained of the class 6/10 and 10/14 has mean values 1.35 and 1.46 g/cm3 respectively. Mechanically, Los Angeles coefficient is 24-46.3% while the Micro-Deval coefficient is 7-35% and the coefficient of dynamic fragmentation is 18-30%. In accordance with geotechnical standards, with the exception of the Gbago massif, the other massifs have a choc resistance and a wear resistance of satisfactory to limited grade as well as good resistance to dynamic fragmentation and therefore usable in any type of structure.


Author(s):  
А.D. Mekhtiyev ◽  
A.I. Soldatov ◽  
Y.G. Neshina ◽  
A.D. Alkina ◽  
P.Sh. Madi

2021 ◽  
Vol 3 (1(59)) ◽  
pp. 19-22
Author(s):  
Anton Korol

The object of research is the processes of controlling the state of side rocks to prevent the collapse of the stratified rock strata in the coal-rock massif containing the workings. The studies carried out made it possible to establish the influence of the rigidity of the guard structures of mine workings on the stability of side rocks in the coal-rock massif. It is proved that as a result of the action of an external compressive load on the supporting lateral rocks, the structure, in the form of a model of bunches made of wooden posts, increases its rigidity until the destruction of the security structure. After that, there is an increase in the convergence of side rocks and their destruction. The change in the stiffness of the crushed rock in the filling massif model, which is used to support the lateral rocks, occurs as a result of the compaction of the original material. This is due to repackaging of crushed rock fractions of different sizes and its additional grinding. As a result of this interaction of the side rocks with the filling massif, the integrity of the roof and soil is ensured and convergence is limited. To assess the stability of side rocks, it is proposed to use a dimensionless stress concentration factor k. This coefficient takes into account the rigidity of the guard structures of the mine workings and the flexural rigidity of the side rocks. It was found that when the values of the coefficient k are close to zero (k→0), there is a loss of stability of the guard structures of mine workings and the destruction of side rocks in the coal-rock massif. The preservation of the integrity of the side rocks and the stability of security structures is ensured at values of k>0.1, which corresponds to the parameters of the pliable supporting structures. Most favorably on the condition of side rocks in the coal-rock massif is influenced by the method of backing up the mined-out space of crushed rock. The use of this method excludes the collapse of side rocks. When solving the problem of stability of mine workings at the stage of making technical decisions, it is necessary to predetermine the issues of rigidity of security structures with deformation characteristics of side rocks.


Rock Bolting ◽  
2021 ◽  
pp. 109-112
Author(s):  
N.S. Bulitchev ◽  
D.I. Kolin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document