Liquid Crystalline Side Chain Polymers with Fluorene as Mesogenic Group

Author(s):  
G. Kossmehl ◽  
M. Schulz ◽  
H.-M. Vieth ◽  
A. Van Der Est
1996 ◽  
Vol 05 (04) ◽  
pp. 735-755 ◽  
Author(s):  
D. GONIN ◽  
B. GUICHARD ◽  
M.C.J. LARGE ◽  
T. DANTAS DE MORAIS ◽  
C. NOËL ◽  
...  

In this paper we consider the behavior of a number of side chain liquid crystal polymers having the same mesogenic group and relate their liquid crystalline behavior to their polarization and nonlinear optical properties. We show that the liquid crystallinity of the materials results in an enhancement of the polar order over that of isotropic materials, in qualitative agreement with molecular statistical models.


1996 ◽  
Vol 425 ◽  
Author(s):  
Y. Watanabe ◽  
N. Koide

AbstractNovel side chain type liquid crystalline polymers, polythiophene and poly(aryleneethynylene) [PAE], containing a mesogenic group in the side chain were synthesized. Polythiophene derivatives were obtained by dehalogenative polycondensation with zero-valence nickel complex under mild condition. PAE type polymers were obtained by coupling dihalo aromatic compound with diethynyl aromatic compound. Their thermal properties were examined by differential scanning calorimetry, optical microscopy and X-ray diffractometry. All polymers exhibited a smectic or nematic mesophase depending upon the polymer backbone and pendant mesogenic group. Polythiophene derivatives exhibited electrochemical activity. Annealing polythiophene derivatives led to a lower oxidation potential and a higher conductivity. The degree of the orientation of the polymer backbone was supported by polarized UV-vis measurement. An effective conjugated length became longer by introducing thiophene rings into the polymer backbone. A high quantum yield of fluorescence was observed for PAE type polymers.


1995 ◽  
Vol 7 (3) ◽  
pp. 255-266 ◽  
Author(s):  
Yu Nagase ◽  
Yuriko Takamura ◽  
Eiichi Akiyama

Preparations of polyimides and polyamides containing a mesogenic group in the side chain connected with a siloxane bond in the spacer component were carried out. A 3,5-diaminobenzyloxy-type monomer having a mesogen consisting of a p'-substituted biphenyl benzoate group was prepared by means of hydrosilylation of 1-[3-43,5-dinitrobenzyloxy)propyl]-1,1,3,3-tetramethyldisiloxane with a mesogenic allyloxy compound, followed by catalytic reduction of the two nitro groups. The polyimides were synthesized by polycondensation of the diamine monomers with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), followed by chemical imidization. The polyamides were also synthesized by polycondensation of the diamine monomers with dicarboxylic dichloride compounds, i.e., terephthaloyl dichloride, oxalyl dichloride, malonyl dichlonride, succinyl dichloride, glutaryI dichloride, adipoyl dichloride, pimeloyI dichloride and azelaoyl dichloride. The structural effects on the thermal properties of the polymers were investigated. The obtained polyamides having an aliphatic group in the main chain exhibited an enantiotropic smectic mesophase at around 100-150C, while no mesophase was observed for the polyimides and a polyamide having an aromatic backbone.


2004 ◽  
Vol 76 (7-8) ◽  
pp. 1337-1343 ◽  
Author(s):  
C.-Y. Chao ◽  
X. Li ◽  
C. K. Ober

Hydrogen-bonded side-chain liquid-crystalline block copolymers (SCLCBCPs) containing block segments with proton donors were combined with functionalized mesogenic pendent groups. Studies of a wide range of mesogen and polymer combinations were carried out to study the relationship between morphology and mesophase behavior. The thermal behaviors of the resulting self-assembled microstructures were also examined. A model of the assembly process leading to mesogenic group organization corresponding to different compositions was proposed.


Author(s):  
Pascal Bezou ◽  
Annie Pacreau ◽  
Jean-Pierre Vairon ◽  
Nelly Lacoudre ◽  
Claude Friedrich ◽  
...  

2006 ◽  
Vol 518 ◽  
pp. 367-374 ◽  
Author(s):  
M. Ilavsky ◽  
H. Valentova ◽  
Z. Sedlakova ◽  
J. Nedbal ◽  
V. Velychko

This paper describes DSC, dielectric and dynamic mechanical behavior of linear and crosslinked liquid crystalline (LC) polyurethanes based on LC diols with a mesogenic group in the side chain, diisocyanates of various flexibility and two triols. From our investigations it follows: a) Linear polymers prepared from diols with simple end side chain substituents (as hydrogen, nitro and nitril group) exhibit only amorphous behavior regardless of the structure of used diisocyanate; generally, the most pronounced LC behavior exhibited polymers prepared from a diol with phenyl substituent. b) Investigation of the curing reaction showed that rheological power-law parameters, which are characteristic of the structure at the gel point, are dependent on the initial ratio of the reactants (amount of LC diol in EANCs). c) Strong physical interactions between the mesogens support the cyclization in the course of crosslinking reaction. d) Introduction of chemical junctions (amount of triols) suppresses LC ordering in the networks.


Sign in / Sign up

Export Citation Format

Share Document