polar order
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 31)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Martina Dragičević ◽  
David Rivas Góngora ◽  
Željko Rapljenović ◽  
Mirta Herak ◽  
Vedran Brusar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 33 (35) ◽  
pp. 2170270
Author(s):  
Hiroya Nishikawa ◽  
Fumito Araoka

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard J. Mandle ◽  
Nerea Sebastián ◽  
Josu Martinez-Perdiguero ◽  
Alenka Mertelj

AbstractNematic liquid crystals have been known for more than a century, but it was not until the 60s–70s that, with the development of room temperature nematics, they became widely used in applications. Polar nematic phases have been long-time predicted, but have only been experimentally realized recently. Synthesis of materials with nematic polar ordering at room temperature is certainly challenging and requires a deep understanding of its formation mechanisms, presently lacking. Here, we compare two materials of similar chemical structure and demonstrate that just a subtle change in the molecular structure enables denser packing of the molecules when they exhibit polar order, which shows that reduction of excluded volume is in the origin of the polar nematic phase. Additionally, we propose that molecular dynamics simulations are potent tools for molecular design in order to predict, identify and design materials showing the polar nematic phase and its precursor nematic phases.


2021 ◽  
pp. 2101305
Author(s):  
Hiroya Nishikawa ◽  
Fumito Araoka

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 831
Author(s):  
Davide Revignas ◽  
Alberta Ferrarini

In the past decade, much evidence has been provided for an unusually low cost for bend deformations in the nematic phase of bent-core mesogens and bimesogens (liquid crystal dimers) having a bent shape on average. Recently, an analogous effect was observed for the splay mode of bent-core mesogens with an acute apical angle. Here, we present a systematic computational investigation of the Frank elastic constants of nematics made of V-shaped particles, with bend angles ranging from acute to obtuse. We show that by tuning this angle, the elastic behavior switches from bend dominated (K33>K11) to splay dominated (K11>K33), with anomalously low values of the splay and the bend constant, respectively. This is related to a change in the shape polarity of particles, which is associated with the emergence of polar order, longitudinal for splay and transversal for bend deformations. Crucial to this study is the use of a recently developed microscopic elastic theory, able to account for the interplay of mesogen morphology and director deformations.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Anil Kumar ◽  
M. Kamal Warshi ◽  
Archna Sagdeo ◽  
Matthew Krzystyniak ◽  
Svemir Rudić ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreja Bencan ◽  
Emad Oveisi ◽  
Sina Hashemizadeh ◽  
Vignaswaran K. Veerapandiyan ◽  
Takuya Hoshina ◽  
...  

AbstractThe nature of the “forbidden” local- and long-range polar order in nominally non-polar paraelectric phases of ferroelectric materials has been an open question since the discovery of ferroelectricity in oxide perovskites, ABO3. A currently considered model suggests locally correlated displacements of B-site atoms along a subset of <111> cubic directions. Such off-site displacements have been confirmed experimentally; however, being essentially dynamic in nature they cannot account for the static nature of the symmetry-forbidden polarization implied by the macroscopic experiments. Here, in an atomically resolved study by aberration-corrected scanning transmission electron microscopy complemented by Raman spectroscopy, we reveal, directly visualize and quantitatively describe static, 2–4 nm large polar nanoclusters in the nominally non-polar cubic phases of (Ba,Sr)TiO3 and BaTiO3. These results have implications on understanding of the atomic-scale structure of disordered materials, the origin of precursor states in ferroelectrics, and may help answering ambiguities on the dynamic-versus-static nature of nano-sized clusters.


2021 ◽  
Vol 118 (22) ◽  
pp. e2104092118
Author(s):  
Xi Chen ◽  
Eva Korblova ◽  
Matthew A. Glaser ◽  
Joseph E. Maclennan ◽  
David M. Walba ◽  
...  

We show that surface interactions can vectorially structure the three-dimensional polarization field of a ferroelectric fluid. The contact between a ferroelectric nematic liquid crystal and a surface with in-plane polarity generates a preferred in-plane orientation of the polarization field at that interface. This is a route to the formation of fluid or glassy monodomains of high polarization without the need for electric field poling. For example, unidirectional buffing of polyimide films on planar surfaces to give quadrupolar in-plane anisotropy also induces macroscopic in-plane polar order at the surfaces, enabling the formation of a variety of azimuthal polar director structures in the cell interior, including uniform and twisted states. In a π-twist cell, obtained with antiparallel, unidirectional buffing on opposing surfaces, we demonstrate three distinct modes of ferroelectric nematic electro-optic response: intrinsic, viscosity-limited, field-induced molecular reorientation; field-induced motion of domain walls separating twisted states of opposite chirality; and propagation of polarization reorientation solitons from the cell plates to the cell center upon field reversal. Chirally doped ferroelectric nematics in antiparallel-rubbed cells produce Grandjean textures of helical twist that can be unwound via field-induced polar surface reorientation transitions. Fields required are in the 3-V/mm range, indicating an in-plane polar anchoring energy of wP ∼3 × 10−3 J/m2.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei Peng ◽  
Junsik Mun ◽  
Qidong Xie ◽  
Jingsheng Chen ◽  
Lingfei Wang ◽  
...  

AbstractOxygen vacancy in oxide ferroelectrics can be strongly coupled to the polar order via local strain and electric fields, thus holding the capability of producing and stabilizing exotic polarization patterns. However, despite intense theoretical studies, an explicit microscopic picture to correlate the polarization pattern and the distribution of oxygen vacancies remains absent in experiments. Here we show that in a high-quality, uniaxial ferroelectric system, i.e., compressively strained BaTiO3 ultrathin films (below 10 nm), nanoscale polarization structures can be created by intentionally introducing oxygen vacancies in the film while maintaining structure integrity (namely no extended lattice defects). Using scanning transmission electron microscopy, we reveal that the nanodomain is composed of swirling electric dipoles in the vicinity of clustered oxygen vacancies. This finding opens a new path toward the creation and understanding of the long-sought topological polar objects such as vortices and skyrmions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Massimiliano Chiappini ◽  
Marjolein Dijkstra

AbstractIn 1976, Meyer predicted that bend distortions of the nematic director field are complemented by deformations of either twist or splay, yielding twist-bend and splay-bend nematic phases, respectively. Four decades later, the existence of the splay-bend nematic phase remains dubious, and the origin of these spontaneous distortions uncertain. Here, we conjecture that bend deformations of the nematic director can be complemented by simultaneous distortions of both twist and splay, yielding a twist-splay-bend nematic phase. Using theory and simulations, we show that the coupling between polar order and bend deformations drives the formation of modulated phases in systems of curved rods. We find that twist-bend phases transition to splay-bend phases via intermediate twist-splay-bend phases, and that splay distortions are always accompanied by periodic density modulations due to the coupling of the particle curvature with the non-uniform curvature of the splayed director field, implying that the twist-splay-bend and splay-bend phases of banana-shaped particles are actually smectic phases.


Sign in / Sign up

Export Citation Format

Share Document