Commutative center = center in a prime finitely generated right alternative ring

1997 ◽  
Vol 25 (10) ◽  
pp. 3147-3153 ◽  
Author(s):  
Irvin R. Hentzel ◽  
Erwin Kleinfeld ◽  
Harry F. Smith
Author(s):  
Jayalakshmi ◽  
S. Madhavi Latha

Some properties of the right nucleus in generalized right alternative rings have been presented in this paper. In a generalized right alternative ring R which is finitely generated or free of locally nilpotent ideals, the right nucleus Nr equals the center C. Also, if R is prime and Nr ¹ C, then the associator ideal of R is locally nilpotent. Seong Nam [5] studied the properties of the right nucleus in right alternative algebra. He showed that if R is a prime right alternative algebra of char. ≠ 2 and Right nucleus Nr is not equal to the center C, then the associator ideal of R is locally nilpotent. But the problem arises when it come with the study of generalized right alternative ring as the ring dose not absorb the right alternative identity. In this paper we consider our ring to be generalized right alternative ring and try to prove the results of Seong Nam [5]. At the end of this paper we give an example to show that the generalized right alternative ring is not right alternative.


Author(s):  
Michael Rich

AbstractTwo local nilpotent properties of an associative or alternative ringAcontaining an idempotent are shown. First, ifA=A11+A10+A01+A00is the Peirce decomposition ofArelative toethen ifais associative or semiprime alternative and 3-torsion free then any locally nilpotent idealBofAiigenerates a locally nilpotent ideal 〈B〉 ofA. As a consequenceL(Aii) =Aii∩L(A)for the Levitzki radicalL. Also bounds are given for the index of nilpotency of any finitely generated subring of 〈B〉. Second, ifA(x)denotes a homotope ofAthenL(A)⊆L(A(x))and, in particular, ifA(x)is an isotope ofAthenL(A)=L(A(x)).


2014 ◽  
Vol 2 (2) ◽  
pp. 18
Author(s):  
Jayalakshmi Karamsi ◽  
Chittem Manjula

1994 ◽  
Vol 50 (2) ◽  
pp. 287-298
Author(s):  
Erwin Kleinfeld ◽  
Harry F. Smith

A ring is called s–prime if the 2-sided annihilator of a nonzero ideal must be zero. In particular, any simple ring or prime (—1, 1) ring is s–prime. Also, a nonzero s–prime right alternative ring, with characteristic ≠ 2, cannot be right nilpotent. Let R be a right alternative ring with commutators in the left nucleus. Then R is associative in the following cases: (1) R is prime, with characteristic ≠ 2, and has an idempotent e ≠ 1 such that (e, e, R) = 0. (2) R is an algebra over a commutative-associative ring with 1/6, and R is either s–prime, or R is prime and locally (—1,1).


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

2016 ◽  
Vol 17 (4) ◽  
pp. 979-980
Author(s):  
Alberto Chiecchio ◽  
Florian Enescu ◽  
Lance Edward Miller ◽  
Karl Schwede
Keyword(s):  

Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


Sign in / Sign up

Export Citation Format

Share Document