f-rings in which every maximal ideal contains finitely many minimal prime ideals

1997 ◽  
Vol 25 (12) ◽  
pp. 3859-3888 ◽  
Author(s):  
Suzanne Larson
1991 ◽  
Vol 56 (1) ◽  
pp. 67-70 ◽  
Author(s):  
Kostas Hatzikiriakou

We assume that the reader is familiar with the program of “reverse mathematics” and the development of countable algebra in subsystems of second order arithmetic. The subsystems we are using in this paper are RCA0, WKL0 and ACA0. (The reader who wants to learn about them should study [1].) In [1] it was shown that the statement “Every countable commutative ring has a prime ideal” is equivalent to Weak Konig's Lemma over RCA0, while the statement “Every countable commutative ring has a maximal ideal” is equivalent to Arithmetic Comprehension over RCA0. Our main result in this paper is that the statement “Every countable commutative ring has a minimal prime ideal” is equivalent to Arithmetic Comprehension over RCA0. Minimal prime ideals play an important role in the study of countable commutative rings; see [2, pp. 1–7].


2019 ◽  
Vol 19 (02) ◽  
pp. 2050034
Author(s):  
H. Behzadipour ◽  
P. Nasehpour

In this paper, we investigate 2-absorbing ideals of commutative semirings and prove that if [Formula: see text] is a nonzero proper ideal of a subtractive valuation semiring [Formula: see text] then [Formula: see text] is a 2-absorbing ideal of [Formula: see text] if and only if [Formula: see text] or [Formula: see text] where [Formula: see text] is a prime ideal of [Formula: see text]. We also show that each 2-absorbing ideal of a subtractive semiring [Formula: see text] is prime if and only if the prime ideals of [Formula: see text] are comparable and if [Formula: see text] is a minimal prime over a 2-absorbing ideal [Formula: see text], then [Formula: see text], where [Formula: see text] is the unique maximal ideal of [Formula: see text].


Author(s):  
Melvin Hochster ◽  
Jack Jeffries

We study when R → S R \to S has the property that prime ideals of R R extend to prime ideals or the unit ideal of S S , and the situation where this property continues to hold after adjoining the same indeterminates to both rings. We prove that if R R is reduced, every maximal ideal of R R contains only finitely many minimal primes of R R , and prime ideals of R [ X 1 , … , X n ] R[{X}_1, \, \ldots , \, {X}_{n}] extend to prime ideals of S [ X 1 , … , X n ] S[{X}_1, \, \ldots , \, {X}_{n}] for all n n , then S S is flat over R R . We give a counterexample to flatness over a reduced quasilocal ring R R with infinitely many minimal primes by constructing a non-flat R R -module M M such that M = P M M = PM for every minimal prime P P of R R . We study the notion of intersection flatness and use it to prove that in certain graded cases it suffices to examine just one closed fiber to prove the stable prime extension property.


1999 ◽  
Vol 51 (7) ◽  
pp. 1129-1134
Author(s):  
B. V. Zabavskii ◽  
A. I. Gatalevich
Keyword(s):  

2013 ◽  
Vol 38 ◽  
pp. 49-59
Author(s):  
MS Raihan

A convex subnearlattice of a nearlattice S containing a fixed element n?S is called an n-ideal. The n-ideal generated by a single element is called a principal n-ideal. The set of finitely generated principal n-ideals is denoted by Pn(S), which is a nearlattice. A distributive nearlattice S with 0 is called m-normal if its every prime ideal contains at most m number of minimal prime ideals. In this paper, we include several characterizations of those Pn(S) which form m-normal nearlattices. We also show that Pn(S) is m-normal if and only if for any m+1 distinct minimal prime n-ideals Po,P1,…., Pm of S, Po ? … ? Pm = S. DOI: http://dx.doi.org/10.3329/rujs.v38i0.16548 Rajshahi University J. of Sci. 38, 49-59 (2010)


2010 ◽  
pp. 69-81 ◽  
Author(s):  
W. D. Burgess ◽  
A. Lashgari ◽  
A. Mojiri
Keyword(s):  

1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050074
Author(s):  
Junye Ma ◽  
Qingguo Li ◽  
Hui Li

In this paper, we study some graph-theoretic properties about the zero-divisor graph [Formula: see text] of a finite quasi-ordered set [Formula: see text] with a least element 0 and its line graph [Formula: see text]. First, we offer a method to find all the minimal prime ideals of a quasi-ordered set. Especially, this method is applicable for a partially ordered set. Then, we completely characterize the diameter and girth of [Formula: see text] by the minimal prime ideals of [Formula: see text]. Besides, we perfectly classify all finite quasi-ordered sets whose zero-divisor graphs are complete graphs, star graphs, complete bipartite graphs, complete [Formula: see text]-partite graphs. We also investigate the planarity of [Formula: see text]. Finally, we obtain the characterization for the line graph [Formula: see text] in terms of its diameter, girth and planarity.


1982 ◽  
Vol 34 (1) ◽  
pp. 169-180 ◽  
Author(s):  
Leslie G. Roberts

Let A be the co-ordinate ring of a reduced curve over a field k. This means that A is an algebra of finite type over k, A has no nilpotent elements, and that if P is a minimal prime ideal of A, then A/P is an integral domain of Krull dimension one. Let M be a maximal ideal of A. Then G(A) (the graded ring of A relative to M) is defined to be . We get the same graded ring if we first localize at M, and then form the graded ring of AM relative to the maximal ideal MAM. That isLet Ā be the integral closure of A. If P1, P2, …, Ps are the minimal primes of A thenwhere A/Pi is a domain and is the integral closure of A/Pi in its quotient field.


Sign in / Sign up

Export Citation Format

Share Document