A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function

Optimization ◽  
2020 ◽  
pp. 1-22
Author(s):  
N. Boudjellal ◽  
H. Roumili ◽  
DJ. Benterki
Filomat ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1471-1486
Author(s):  
S. Fathi-Hafshejani ◽  
Reza Peyghami

In this paper, a primal-dual interior point algorithm for solving linear optimization problems based on a new kernel function with a trigonometric barrier term which is not only used for determining the search directions but also for measuring the distance between the given iterate and the ?-center for the algorithm is proposed. Using some simple analysis tools and prove that our algorithm based on the new proposed trigonometric kernel function meets O (?n log n log n/?) and O (?n log n/?) as the worst case complexity bounds for large and small-update methods. Finally, some numerical results of performing our algorithm are presented.


Author(s):  
Spyridon Pougkakiotis ◽  
Jacek Gondzio

Abstract In this paper we combine an infeasible Interior Point Method (IPM) with the Proximal Method of Multipliers (PMM). The resulting algorithm (IP-PMM) is interpreted as a primal-dual regularized IPM, suitable for solving linearly constrained convex quadratic programming problems. We apply few iterations of the interior point method to each sub-problem of the proximal method of multipliers. Once a satisfactory solution of the PMM sub-problem is found, we update the PMM parameters, form a new IPM neighbourhood and repeat this process. Given this framework, we prove polynomial complexity of the algorithm, under standard assumptions. To our knowledge, this is the first polynomial complexity result for a primal-dual regularized IPM. The algorithm is guided by the use of a single penalty parameter; that of the logarithmic barrier. In other words, we show that IP-PMM inherits the polynomial complexity of IPMs, as well as the strict convexity of the PMM sub-problems. The updates of the penalty parameter are controlled by IPM, and hence are well-tuned, and do not depend on the problem solved. Furthermore, we study the behavior of the method when it is applied to an infeasible problem, and identify a necessary condition for infeasibility. The latter is used to construct an infeasibility detection mechanism. Subsequently, we provide a robust implementation of the presented algorithm and test it over a set of small to large scale linear and convex quadratic programming problems. The numerical results demonstrate the benefits of using regularization in IPMs as well as the reliability of the method.


Sign in / Sign up

Export Citation Format

Share Document