box constraints
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Benchun Zhou ◽  
Aibo Wang ◽  
Jan-Felix Klein ◽  
Furmans Kai

2021 ◽  
Author(s):  
Sayed Abdullah Sadat ◽  
Kibaek Kim

<div>Alternating current optimal power flow (ACOPF) problems are nonconvex and nonlinear optimization problems. Utilities and independent service operators (ISO) require ACOPF to be solved in almost real time. Interior point methods (IPMs) are one of the powerful methods for solving large-scale nonlinear optimization problems and are a suitable approach for solving ACOPF with large-scale real-world transmission networks. Moreover, the choice of the formulation is as important as choosing the algorithm for solving an ACOPF problem. In this paper, different ACOPF formulations with various linear solvers and the impact of employing box constraints are evaluated for computational viability and best performance when using IPMs. Different optimization structures are used in these formulations to model the ACOPF problem representing a range of sparsity. The numerical experiments suggest that the least sparse ACOPF formulations with polar voltages yield the best computational results. Additionally, nodal injected models and current-based branch flow models are improved by enforcing box constraints. A wide range of test cases, ranging from 500-bus systems to 9591-bus systems, are used to verify the test results.</div>


2021 ◽  
Author(s):  
Sayed Abdullah Sadat ◽  
Kibaek Kim

<div>Alternating current optimal power flow (ACOPF) problems are nonconvex and nonlinear optimization problems. Utilities and independent service operators (ISO) require ACOPF to be solved in almost real time. Interior point methods (IPMs) are one of the powerful methods for solving large-scale nonlinear optimization problems and are a suitable approach for solving ACOPF with large-scale real-world transmission networks. Moreover, the choice of the formulation is as important as choosing the algorithm for solving an ACOPF problem. In this paper, different ACOPF formulations with various linear solvers and the impact of employing box constraints are evaluated for computational viability and best performance when using IPMs. Different optimization structures are used in these formulations to model the ACOPF problem representing a range of sparsity. The numerical experiments suggest that the least sparse ACOPF formulations with polar voltages yield the best computational results. Additionally, nodal injected models and current-based branch flow models are improved by enforcing box constraints. A wide range of test cases, ranging from 500-bus systems to 9591-bus systems, are used to verify the test results.</div>


Author(s):  
Jasem Tamimi

Model predictive control (MPC) is a control strategy that can handle state and control multi-variables at same time. To use the MPC using direct methods for solving the a dynamic optimization problem, one needs, for example, to transform the optimization problem into a nonlinear programming (NLP) problem by dividing the prediction horizon into equal time intervals. In this work, we suggest a tool and procedures for helping to choose a ‘compromise’ number of time intervals with a needed accuracy, objective cost, number of turned NLP iterations and computational time. On the other hand, we offer a simplified nonlinear program to ensure the convergence of a class of finite optimal control problem by modifying the state box constraints. In particular, a special type of box constraints were used to the constrained optimal control problem to enforce the state trajectories to reach the desired stationary point. These box constraints are characterized by some parameters that are easily optimized by our proposed nonlinear program. Our proposed tools are tested using two case studies; nonlinear continuous stirred tank reactor (CSTR) and nonlinear batch reactor.


2021 ◽  
Vol 61 (1) ◽  
pp. 242-252
Author(s):  
Marek Lechman ◽  
Andrzej Stachurski

In this paper, the results of an application of global and local optimization methods to solve a problem of determination of strains in RC compressed structure members are presented. Solutions of appropriate sets of nonlinear equations in the presence of box constraints have to be found. The use of the least squares method leads to finding global solutions of optimization problems with box constraints. Numerical examples illustrate the effects of the loading value and the loading eccentricity on the strains in concrete and reinforcing steel in the a cross-section.Three different minimization methods were applied to compute them: trust region reflective, genetic algorithm tailored to problems with real double variables and particle swarm method. Numerical results on practical data are presented. In some cases, several solutions were found. Their existence has been detected by the local search with multistart, while the genetic and particle swarm methods failed to recognize their presence.


Sign in / Sign up

Export Citation Format

Share Document