Dihedral angles principal geodesic analysis using nonlinear statistics

2015 ◽  
Vol 42 (9) ◽  
pp. 1962-1972 ◽  
Author(s):  
A. Nodehi ◽  
M. Golalizadeh ◽  
A. Heydari
2004 ◽  
Vol 23 (8) ◽  
pp. 995-1005 ◽  
Author(s):  
P.T. Fletcher ◽  
C. Lu ◽  
S.M. Pizer ◽  
S. Joshi

2020 ◽  
Author(s):  
Michele Larocca

<p>Protein folding is strictly related to the determination of the backbone dihedral angles and depends on the information contained in the amino acid sequence as well as on the hydrophobic effect. To date, the type of information embedded in the amino acid sequence has not yet been revealed. The present study deals with these problematics and aims to furnish a possible explanation of the information contained in the amino acid sequence, showing and reporting rules to calculate the backbone dihedral angles φ. The study is based on the development of mechanical forces once specific chemical interactions are established among the side chain of the residues in a polypeptide chain. It aims to furnish a theoretical approach to predict backbone dihedral angles which, in the future, may be applied to computational developments focused on the prediction of polypeptide structures.</p>


2020 ◽  
Vol 39 (5) ◽  
pp. 119-132
Author(s):  
Josua Sassen ◽  
Klaus Hildebrandt ◽  
Martin Rumpf

2014 ◽  
Vol 70 (6) ◽  
pp. o679-o679 ◽  
Author(s):  
Hakima Chicha ◽  
El Mostapha Rakib ◽  
Abdellah Hannioui ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-ethoxy group, respectively. In the crystal, molecules are connected by pairs of N—H...O hydrogen bonds into inversion dimers, which are further linked by π–π interactions between the diazole rings [intercentroid distance = 3.4946 (11) Å], forming chains parallel to [101].


2012 ◽  
Vol 68 (4) ◽  
pp. o1228-o1228
Author(s):  
Mohd Sukeri Mohd Yusof ◽  
Fatimah Abdul Mutalib ◽  
Suhana Arshad ◽  
Ibrahim Abdul Razak

In the title compound, C16H22N2OS2, the S atom of the thiadiazole ring and the attached methyl groups are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). The thiadiazole ring is in a twist conformation in both disorder components. The mean plane through the thiadiazole ring makes dihedral angles of 77.39 (8) (major component) and 67.45 (11)° (minor component) with the benzene ring. Intramolecular C—H...N interactions generate twoS(6) ring motifs. In the crystal, molecules are linked by C—H...O hydrogen bonds into zigzag chains parallel to thebaxis.


2006 ◽  
Vol 33 (24) ◽  
Author(s):  
Shiraj Khan ◽  
Auroop R. Ganguly ◽  
Sharba Bandyopadhyay ◽  
Sunil Saigal ◽  
David J. Erickson ◽  
...  

2014 ◽  
Vol 70 (8) ◽  
pp. 58-61
Author(s):  
Aina Mardia Akhmad Aznan ◽  
Zanariah Abdullah ◽  
Vannajan Sanghiran Lee ◽  
Edward R. T. Tiekink

The title compound, C12H11N3O2, is a second monoclinic polymorph (P21, withZ′ = 4) of the previously reported monoclinic (P21/c, withZ′ = 2) form [Akhmad Aznanet al.(2010).Acta Cryst.E66, o2400]. Four independent molecules comprise the asymmetric unit, which have the common features of asyndisposition of the pyridine N atom and the toluene ring, and an intramolecular amine–nitro N—H...O hydrogen bond. The differences between molecules relate to the dihedral angles between the rings which range from 2.92 (19) to 26.24 (19)°. The geometry-optimized structure [B3LYP level of theory and 6–311 g+(d,p) basis set] has the same features except that the entire molecule is planar. In the crystal, the three-dimensional architecture is consolidated by a combination of C—H...O, C—H...π, nitro-N—O...π and π–π interactions [inter-centroid distances = 3.649 (2)–3.916 (2) Å].


Sign in / Sign up

Export Citation Format

Share Document