Asymptotic behavior of positive solutions of the equation complete riemannian manifold and positive scalar curvature

1999 ◽  
Vol 24 (3-4) ◽  
pp. 425-462 ◽  
Author(s):  
Man Chun Leung
2018 ◽  
Vol 12 (04) ◽  
pp. 897-939 ◽  
Author(s):  
Simone Cecchini

A Dirac-type operator on a complete Riemannian manifold is of Callias-type if its square is a Schrödinger-type operator with a potential uniformly positive outside of a compact set. We develop the theory of Callias-type operators twisted with Hilbert [Formula: see text]-module bundles and prove an index theorem for such operators. As an application, we derive an obstruction to the existence of complete Riemannian metrics of positive scalar curvature on noncompact spin manifolds in terms of closed submanifolds of codimension one. In particular, when [Formula: see text] is a closed spin manifold, we show that if the cylinder [Formula: see text] carries a complete metric of positive scalar curvature, then the (complex) Rosenberg index on [Formula: see text] must vanish.


Author(s):  
Sabine Braun ◽  
Roman Sauer

AbstractWe prove the macroscopic cousins of three conjectures: (1) a conjectural bound of the simplicial volume of a Riemannian manifold in the presence of a lower scalar curvature bound, (2) the conjecture that rationally essential manifolds do not admit metrics of positive scalar curvature, (3) a conjectural bound of $$\ell ^2$$ ℓ 2 -Betti numbers of aspherical Riemannian manifolds in the presence of a lower scalar curvature bound. The macroscopic cousin is the statement one obtains by replacing a lower scalar curvature bound by an upper bound on the volumes of 1-balls in the universal cover.


Author(s):  
Saskia Roos ◽  
Nobuhiko Otoba

AbstractFor a closed, connected direct product Riemannian manifold $$(M, g)=(M_1, g_1) \times \cdots \times (M_l, g_l)$$ ( M , g ) = ( M 1 , g 1 ) × ⋯ × ( M l , g l ) , we define its multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] as the totality $$\{f_1^2g_1\oplus \cdots \oplus f_l^2g_l\}$$ { f 1 2 g 1 ⊕ ⋯ ⊕ f l 2 g l } of all Riemannian metrics obtained from multiplying the metric $$g_i$$ g i of each factor $$M_i$$ M i by a positive function $$f_i$$ f i on the total space M. A multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] contains not only all warped product type deformations of g but also the whole conformal class $$[\tilde{g}]$$ [ g ~ ] of every $$\tilde{g}\in [\![ g ]\!]$$ g ~ ∈ [ [ g ] ] . In this article, we prove that $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of positive scalar curvature if and only if the conformal class of some factor $$(M_i, g_i)$$ ( M i , g i ) does, under the technical assumption $$\dim M_i\ge 2$$ dim M i ≥ 2 . We also show that, even in the case where every factor $$(M_i, g_i)$$ ( M i , g i ) has positive scalar curvature, $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of scalar curvature constantly equal to $$-1$$ - 1 and with arbitrarily large volume, provided $$l\ge 2$$ l ≥ 2 and $$\dim M\ge 3$$ dim M ≥ 3 .


2018 ◽  
Vol 49 (4) ◽  
pp. 267-275 ◽  
Author(s):  
Punam Gupta

In this paper, the non-existence of connected, compact Einstein doubly warped product semi-Riemannian manifold with non-positive scalar curvature is proved. It is also shown that there does not exist non-trivial connected Einstein doubly warped product semi-Riemannian manifold with compact base $B$ or fibre $F$.


2020 ◽  
Vol 5 (3) ◽  
pp. 639-676
Author(s):  
Michael Hallam ◽  
Varghese Mathai

Author(s):  
Thomas Hasanis

AbstractWe consider the extent of certain complete hypersurfaces of Euclidean space. We prove that every complete hypersurface in En+1 with sectional curvature bounded below and non-positive scalar curvature has at least (n − 1) unbounded coordinate functions.


Sign in / Sign up

Export Citation Format

Share Document