On Relative Reversed Hazard Rate Order

2014 ◽  
Vol 44 (2) ◽  
pp. 300-308 ◽  
Author(s):  
Majid Rezaei ◽  
Behzad Gholizadeh ◽  
Salman Izadkhah
2016 ◽  
Vol 30 (4) ◽  
pp. 622-639 ◽  
Author(s):  
Gaofeng Da ◽  
Maochao Xu ◽  
Shouhuai Xu

In this paper, we propose a novel method for constructing upper bounds of the quasi-stationary distribution of SIS processes. Using this method, we obtain an upper bound that is better than the state-of-the-art upper bound. Moreover, we prove that the fixed point map Φ [7] actually preserves the equilibrium reversed hazard rate order under a certain condition. This allows us to further improve the upper bound. Some numerical results are presented to illustrate the results.


2011 ◽  
Vol 48 (3) ◽  
pp. 877-884 ◽  
Author(s):  
Maochao Xu ◽  
N. Balakrishnan

In this paper, some ordering properties of convolutions of heterogeneous Bernoulli random variables are discussed. It is shown that, under some suitable conditions, the likelihood ratio order and the reversed hazard rate order hold between convolutions of two heterogeneous Bernoulli sequences. The results established here extend and strengthen the previous results of Pledger and Proschan (1971) and Boland, Singh and Cukic (2002).


2005 ◽  
Vol 19 (4) ◽  
pp. 447-461 ◽  
Author(s):  
I. A. Ahmad ◽  
M. Kayid

Two well-known orders that have been introduced and studied in reliability theory are defined via stochastic comparison of inactivity time: the reversed hazard rate order and the mean inactivity time order. In this article, some characterization results of those orders are given. We prove that, under suitable conditions, the reversed hazard rate order is equivalent to the mean inactivity time order. We also provide new characterizations of the decreasing reversed hazard rate (increasing mean inactivity time) classes based on variability orderings of the inactivity time of k-out-of-n system given that the time of the (n − k + 1)st failure occurs at or sometimes before time t ≥ 0. Similar conclusions based on the inactivity time of the component that fails first are presented as well. Finally, some useful inequalities and relations for weighted distributions related to reversed hazard rate (mean inactivity time) functions are obtained.


2012 ◽  
Vol 26 (2) ◽  
pp. 159-182 ◽  
Author(s):  
Peng Zhao ◽  
N. Balakrishnan

In this paper, we carry out stochastic comparisons of largest order statistics from multiple-outlier exponential models according to the likelihood ratio order (reversed hazard rate order) and the hazard rate order (usual stochastic order). It is proved, among others, that the weak majorization order between the two hazard rate vectors is equivalent to the likelihood ratio order (reversed hazard rate order) between largest order statistics, and that the p-larger order between the two hazard rate vectors is equivalent to the hazard rate order (usual stochastic order) between largest order statistics. We also extend these results to the proportional hazard rate models. The results established here strengthen and generalize some of the results known in the literature.


2000 ◽  
Vol 14 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Taizhong Hu ◽  
Fangyi He

Let τk|n denote the lifetime of a k-out-of-n system constructed by using n components with independent (not necessarily identically distributed) lifetimes. It is shown that τk|n is smaller than τk−1|n−1 in the hazard rate order for any k and that τk|n−1 is smaller than τk|n in the reversed hazard rate order for any k. We thus strengthen and complement some results in Boland et al. [2] and Block et al. [1].


2017 ◽  
Vol 33 (1) ◽  
pp. 28-49
Author(s):  
Narayanaswamy Balakrishnan ◽  
Jianbin Chen ◽  
Yiying Zhang ◽  
Peng Zhao

In this paper, we discuss the ordering properties of sample ranges arising from multiple-outlier exponential and proportional hazard rate (PHR) models. The purpose of this paper is twofold. First, sufficient conditions on the parameter vectors are provided for the reversed hazard rate order and the usual stochastic order between the sample ranges arising from multiple-outlier exponential models with common sample size. Next, stochastic comparisons are separately carried out for sample ranges arising from multiple-outlier exponential and PHR models with different sample sizes as well as different hazard rates. Some numerical examples are also presented to illustrate the results established here.


2013 ◽  
Vol 28 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Weiyong Ding ◽  
Gaofeng Da ◽  
Xiaohu Li

This paper carries out stochastic comparisons of series and parallel systems with independent and heterogeneous components in the sense of the hazard rate order, the reversed hazard rate order, and the likelihood ratio order. The main results extend and strengthen the corresponding ones by Misra and Misra [18] and by Ding, Zhang, and Zhao [8]. Meanwhile, the results on the hazard rate order of parallel systems and the reversed hazard order of series systems serve as nice supplements to Theorem 16.B.1 of Boland and Proschan [4] and Theorem 3.2 of Nanda and Shaked [20], respectively.


2011 ◽  
Vol 26 (1) ◽  
pp. 61-75 ◽  
Author(s):  
Weiyong Ding ◽  
Xiaohu Li ◽  
Narayanaswamy Balakrishnan

Here, we discuss the stochastic comparison of residual lifetimes of parallel systems and inactivity times of series systems by means of the reversed hazard rate order when the components of the systems are independent but not necessarily identically distributed. We also establish some monotonicity properties of such residual lifetimes of parallel systems and inactivity times of series systems. These results extend some of the recent results in this direction due to Zhao, Li, and Balakrishnan [21], Kochar and Xu [12], and Saledi and Asadi [16].


Author(s):  
Ghobad Barmalzan ◽  
Sajad Kosari ◽  
Narayanaswamy Balakrishnan

In this paper, we consider finite mixture models with components having distributions from the location-scale family. We then discuss the usual stochastic order and the reversed hazard rate order of such finite mixture models under some majorization conditions on location, scale and mixing probabilities as model parameters.


2011 ◽  
Vol 48 (03) ◽  
pp. 877-884 ◽  
Author(s):  
Maochao Xu ◽  
N. Balakrishnan

In this paper, some ordering properties of convolutions of heterogeneous Bernoulli random variables are discussed. It is shown that, under some suitable conditions, the likelihood ratio order and the reversed hazard rate order hold between convolutions of two heterogeneous Bernoulli sequences. The results established here extend and strengthen the previous results of Pledger and Proschan (1971) and Boland, Singh and Cukic (2002).


Sign in / Sign up

Export Citation Format

Share Document