Dynamical behavior of a hybrid switching SIS epidemic model with vaccination and Lévy jumps

2019 ◽  
Vol 37 (3) ◽  
pp. 388-411 ◽  
Author(s):  
Qun Liu ◽  
Daqing Jiang ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Yanan Zhao ◽  
Daqing Jiang

We introduce stochasticity into an SIS epidemic model with vaccination. The stochasticity in the model is a standard technique in stochastic population modeling. In the deterministic models, the basic reproduction numberR0is a threshold which determines the persistence or extinction of the disease. When the perturbation and the disease-related death rate are small, we carry out a detailed analysis on the dynamical behavior of the stochastic model, also regarding of the value ofR0. IfR0≤1, the solution of the model is oscillating around a steady state, which is the disease-free equilibrium of the corresponding deterministic model, whereas, ifR0>1, there is a stationary distribution, which means that the disease will prevail. The results are illustrated by computer simulations.


2014 ◽  
Vol 46 (01) ◽  
pp. 241-255 ◽  
Author(s):  
Peter Neal

We study the endemic behaviour of a homogeneously mixing SIS epidemic in a population of size N with a general infectious period, Q, by introducing a novel subcritical branching process with immigration approximation. This provides a simple but useful approximation of the quasistationary distribution of the SIS epidemic for finite N and the asymptotic Gaussian limit for the endemic equilibrium as N → ∞. A surprising observation is that the quasistationary distribution of the SIS epidemic model depends on Q only through


Sign in / Sign up

Export Citation Format

Share Document