age structured
Recently Published Documents


TOTAL DOCUMENTS

1582
(FIVE YEARS 444)

H-INDEX

56
(FIVE YEARS 9)

Author(s):  
Joseph S. Phillips ◽  
Guðni Guðbergsson ◽  
Anthony R Ives

Quantifying temporal variation in demographic rates is a central goal of population ecology. In this study, we analyzed a multidecadal age-structured time series of Arctic charr (Salvelinus alpinus) abundance in Lake Mývatn, Iceland, to infer the time-varying demographic response of the population to reduced harvest in the wake of the fishery's collapse. Our analysis shows that while survival probability of adults increased following the alleviation of harvesting pressure, per capita recruitment consistently declined over most of the study period, until the final three years when it began to increase. The countervailing demographic trends resulted in only limited directional change in the total population size and population growth rate. Rather, the population dynamics were dominated by large interannual variability and a shift towards an older age distribution. Our results are indicative of a slow recovery of the population after its collapse, despite the rising number of adults following relaxed harvest. This underscores the potential for heterogeneous demographic responses to management efforts due to the complex ecological context in which such efforts take place.


2022 ◽  
Author(s):  
Anyin Feng ◽  
Uri Obolski ◽  
Lewi Stone ◽  
Daihai He

In August 2021, a major wave of the SARS-CoV-2 Delta variant erupted in the highly vaccinated population of Israel. The Delta variant has a transmission advantage over the Alpha variant, and thus replaced it in approximately two months. The outbreak led to an unexpectedly large proportion of breakthrough infections (BTI)-- a phenomenon that received worldwide attention. The BTI proportion amongst cases in the age group of 60+ years reached levels as high as ~85% in August 2021. Most of the Israeli population, especially those 60+ age, received their second dose of the vaccination, four months before the invasion of the Delta variant. Hence, either the vaccine induced immunity dropped significantly or the Delta variant possesses immunity escaping abilities. In this work, we analyzed and model age-structured cases, vaccination coverage, and vaccine BTI data obtained from the Israeli Ministry of Health, to help understand the epidemiological factors involved in the outbreak. We propose a mathematical model which captures a multitude of factors, including age structure, the time varying vaccine efficacy, time varying transmission rate, BTIs, reduced susceptibility and infectivity of vaccinated individuals, protection duration of the vaccine induced immunity, and the vaccine distribution. We fitted our model to the cases among vaccinated and unvaccinated, for <60 and 60+ age groups, to address the aforementioned factors. We found that the transmission rate was driven by multiple factors including the invasion of Delta variant and the mitigation measures. Through a model reconstruction of the reproductive number R0(t), it was found that the peak transmission rate of the Delta variant was 1.96 times larger than the previous Alpha variant. The model estimated that the vaccine efficacy dropped significantly from >90% to ~40% over 6 months, and that the immunity protection duration has a peaked Gamma distribution (rather than exponential). We further performed model simulations quantifying the important role of the third vaccination booster dose in reducing the levels of breakthrough infections. This allowed us to explore "what if" scenarios should the booster not have been rolled out. Application of this framework upon invasion of new pathogens, or variants of concern, can help elucidate important factors in the outbreak dynamics and highlight potential routes of action to mitigate their spread.


2022 ◽  
Vol 16 (1) ◽  
pp. 14-28
Author(s):  
Xi-Chao Duan ◽  
Xue-Zhi Li ◽  
Maia Martcheva ◽  
Sanling Yuan

2022 ◽  
Author(s):  
Robin S Waples

1. The Wright-Fisher model, which directs how matings occur and how genes are transmitted across generations, has long been a lynchpin of evolutionary biology. This model is elegantly simple, analytically tractable, and easy to implement, but it has one serious limitation: essentially no real species satisfies its many assumptions. With growing awareness of the importance of jointly considering both ecology and evolution in eco-evolutionary models, this limitation has become more apparent, causing many researchers to search for more realistic simulation models. 2. A recently described variation retains most of the Wright-Fisher simplicity but provides greater flexibility to accommodate departures from model assumptions. This generalized Wright-Fisher model relaxes the assumption that all individuals have identical expected reproductive success by introducing a vector of parental weights w that specifies relative probabilities different individuals have of producing offspring. With parental weights specified this way, expectations of key demographic parameters are simple functions of w. This allows researchers to quantitatively predict the consequences of non-Wright-Fisher features incorporated into their models. 3. An important limitation of the Wright-Fisher model is that it assumes discrete generations, whereas most real species are age-structured. Here I show how an algorithm (THEWEIGHT) that implements the generalized Wright-Fisher model can be used to model evolution in age-structured populations with overlapping generations. Worked examples illustrate simulation of seasonal and lifetime reproductive success and show how the user can pick vectors of weights expected to produce a desired level of reproductive skew or a desired Ne/N ratio. Alternatively, weights can be associated with heritable traits to provide a simple, quantitative way to model natural selection. Using THEWEIGHT, it is easy to generate positive or negative correlations of individual reproductive success over time, thus allowing explicit modeling of common biological processes like skip breeding and persistent individual differences. 4. R code is provided to implement basic features of THEWEIGHT and applications described here. However, required coding changes to the Wright-Fisher model are modest, so the real value of the new algorithm is to encourage users to adopt its features into their own or others models.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Filippo Trentini ◽  
Elena Pariani ◽  
Antonino Bella ◽  
Giulio Diurno ◽  
Lucia Crottogini ◽  
...  

Abstract Background Despite thousands of influenza cases annually recorded by surveillance systems around the globe, estimating the transmission patterns of seasonal influenza is challenging. Methods We develop an age-structured mathematical model to influenza transmission to analyze ten consecutive seasons (from 2010 to 2011 to 2019–2020) of influenza epidemiological and virological data reported to the Italian surveillance system. Results We estimate that 18.4–29.3% of influenza infections are detected by the surveillance system. Influenza infection attack rate varied between 12.7 and 30.5% and is generally larger for seasons characterized by the circulation of A/H3N2 and/or B types/subtypes. Individuals aged 14 years or less are the most affected age-segment of the population, with A viruses especially affecting children aged 0–4 years. For all influenza types/subtypes, the mean effective reproduction number is estimated to be generally in the range 1.09–1.33 (9 out of 10 seasons) and never exceeding 1.41. The age-specific susceptibility to infection appears to be a type/subtype-specific feature. Conclusions The results presented in this study provide insights on type/subtype-specific transmission patterns of seasonal influenza that could be instrumental to fine-tune immunization strategies and non-pharmaceutical interventions aimed at limiting seasonal influenza spread and burden.


2022 ◽  
Author(s):  
Solym Mawaki MANOU-ABI ◽  
Yousri SLAOUI ◽  
Julien BALICCHI

We study in this work some statistical methods to estimate the parameters resulting from the use of an age-structured contact mathematical epidemic model in order to analyze the evolution of the epidemic curve of Covid-19 in the French overseas department Mayotte from march 13, 2020 to february 26,2021. Using several statistic methods based on time dependent method, maximum likelihood, mixture method, we fit the probability distribution which underlines the serial interval distribution and we give an adapted version of the generation time distribution from Package R0. The best-fit model of the serial interval was given by a mixture of Weibull distribution. Furthermore this estimation allows to obtain the evolution of the time varying effective reproduction number and hence the temporal transmission rates. Finally based on others known estimates parameters we incorporate the estimated parameters in the model in order to give an approximation of the epidemic curve in Mayotte under the conditions of the model. We also discuss the limit of our study and the conclusion concerned a probable impact of non pharmacological interventions of the Covid-19 in Mayotte such us the re-infection cases and the introduction of the variants which probably affect the estimates.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
David W. Dick ◽  
Lauren Childs ◽  
Zhilan Feng ◽  
Jing Li ◽  
Gergely Röst ◽  
...  

COVID-19 seroprevalence changes over time, with infection, vaccination, and waning immunity. Seroprevalence estimates are needed to determine when increased COVID-19 vaccination coverage is needed, and when booster doses should be considered, to reduce the spread and disease severity of COVID-19 infection. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. This is the first mathematical model to do so. We estimate that 60–80% of the Canadian population has some immunity to COVID-19 by late Summer 2021, depending on specific characteristics of the vaccine and the waning rate of immunity. Models results indicate that increased vaccination uptake in age groups 12–29, and booster doses in age group 50+ are needed to reduce the severity COVID-19 Fall 2021 resurgence.


2021 ◽  
Vol 6 ◽  
pp. 138
Author(s):  
Eleanor M. Rees ◽  
Naomi R. Waterlow ◽  
Rachel Lowe ◽  
Adam J. Kucharski ◽  

Background: The duration of immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still uncertain, but it is of key clinical and epidemiological importance. Seasonal human coronaviruses (HCoV) have been circulating for longer and, therefore, may offer insights into the long-term dynamics of reinfection for such viruses. Methods: Combining historical seroprevalence data from five studies covering the four circulating HCoVs with an age-structured reverse catalytic model, we estimated the likely duration of seropositivity following seroconversion. Results: We estimated that antibody persistence lasted between 0.9 (95% Credible interval: 0.6 - 1.6) and 3.8 (95% CrI: 2.0 - 7.4) years. Furthermore, we found the force of infection in older children and adults (those over 8.5 [95% CrI: 7.5 - 9.9] years) to be higher compared with young children in the majority of studies. Conclusions: These estimates of endemic HCoV dynamics could provide an indication of the future long-term infection and reinfection patterns of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document