sis epidemic
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 99)

H-INDEX

34
(FIVE YEARS 6)

Author(s):  
Oğul Esen ◽  
Eduardo Fernández‐Saiz ◽  
Cristina Sardón ◽  
Marcin Zając

Computation ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 89
Author(s):  
Caterina Balzotti ◽  
Mirko D’Ovidio ◽  
Anna Chiara Lai ◽  
Paola Loreti

We study epidemic Susceptible–Infected–Susceptible (SIS) models in the fractional setting. The novelty is to consider models in which the susceptible and infected populations evolve according to different fractional orders. We study a model based on the Caputo derivative, for which we establish existence results of the solutions. Furthermore, we investigate a model based on the Caputo–Fabrizio operator, for which we provide existence of solutions and a study of the equilibria. Both models can be framed in the context of SIS models with time-varying total population, in which the competition between birth and death rates is macroscopically described by the fractional orders of the derivatives. Numerical simulations for both models and a direct numerical comparison are also provided.


2021 ◽  
Author(s):  
Xingzhi Chen ◽  
Baodan Tian ◽  
Xin Xu ◽  
Ruoxi Yang ◽  
Shouming Zhong

Abstract This paper studies a stochastic differential equation SIS epidemic model, disturbed randomly by the mean-reverting Ornstein-Uhlenbeck process and Brownian motion. We prove the existence and uniqueness of the positive global solutions of the model and obtain the controlling conditions for the extinction and persistence of the disease. The results show that when the basic reproduction number Rs0 < 1, the disease will extinct, on the contrary, when the basic reproduction number Rs0 > 1, the disease will persist. Furthermore, we can inhibit the outbreak of the disease by increasing the intensity of volatility or decreasing the speed of reversion ϑ, respectively. Finally, we give some numerical examples to verify these results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giannis Moutsinas ◽  
Choudhry Shuaib ◽  
Weisi Guo ◽  
Stephen Jarvis

AbstractTrophic coherence, a measure of a graph’s hierarchical organisation, has been shown to be linked to a graph’s structural and dynamical aspects such as cyclicity, stability and normality. Trophic levels of vertices can reveal their functional properties, partition and rank the vertices accordingly. Trophic levels and hence trophic coherence can only be defined on graphs with basal vertices, i.e. vertices with zero in-degree. Consequently, trophic analysis of graphs had been restricted until now. In this paper we introduce a hierarchical framework which can be defined on any simple graph. Within this general framework, we develop several metrics: hierarchical levels, a generalisation of the notion of trophic levels, influence centrality, a measure of a vertex’s ability to influence dynamics, and democracy coefficient, a measure of overall feedback in the system. We discuss how our generalisation relates to previous attempts and what new insights are illuminated on the topological and dynamical aspects of graphs. Finally, we show how the hierarchical structure of a network relates to the incidence rate in a SIS epidemic model and the economic insights we can gain through it.


Sign in / Sign up

Export Citation Format

Share Document