An efficient modal strain energy-based damage detection for laminated composite plates

2017 ◽  
Vol 27 (2) ◽  
pp. 147-162 ◽  
Author(s):  
Mohammad-Reza Ashory ◽  
Ahmad Ghasemi-Ghalebahman ◽  
Mohammad-Javad Kokabi
2020 ◽  
Vol 4 (4) ◽  
pp. 185
Author(s):  
Mahendran Govindasamy ◽  
Gopalakrishnan Kamalakannan ◽  
Chandrasekaran Kesavan ◽  
Ganesh Kumar Meenashisundaram

This paper deals with detection of macro-level crack type damage in rectangular E-Glass fiber/Epoxy resin (LY556) laminated composite plates using modal analysis. Composite plate-like structures are widely found in aerospace and automotive structural applications which are susceptible to damages. The formation of cracks in a structure that undergoes vibration may lead to catastrophic events such as structural failure, thus detection of such occurrences is considered necessary. In this research, a novel technique called as node-releasing technique in Finite Element Analysis (FEA), which was not attempted by the earlier researchers, is used to model the perpendicular cracks (the type of damage mostly considered in all the pioneering research works) and also slant cracks (a new type of damage considered in the present work) of various depths and lengths for Unidirectional Laminate (UDL) ([0]S and [45]S) composite layered configurations using commercial FE code Ansys, thus simulating the actual damage scenario. Another novelty of the present work is that the crack is modeled with partial depth along the thickness of the plate, instead of the through the thickness crack which has been of major focus in the literature so far, in order to include the possibility of existence of the crack up to certain layers in the laminated composite structures. The experimental modal analysis is carried out to validate the numerical model. Using central difference approximation method, the modal curvature is determined from the displacement mode shapes which are obtained via finite element analysis. The damage indicators investigated in this paper are Normalized Curvature Damage Factor (NCDF) and modal strain energy-based methods such as Strain Energy Difference (SED) and Damage Index (DI). It is concluded that, all the three damage detection algorithms detect the transverse crack clearly. In addition, the damage indicator NCDF seems to be more effective than the other two, particularly when the detection is for damage inclined to the longitudinal axis of the plate. The proposed method will provide the base data for implementing online structural health monitoring of structures using technologies such as Machine Learning, Artificial Intelligence, etc.


2011 ◽  
Vol 311-313 ◽  
pp. 2235-2238
Author(s):  
Zainudin A Rasid ◽  
Rizal Zahari ◽  
Ayob Amran ◽  
Dayang Laila Majid ◽  
Ahmad Shakrine M. Rafie

Shape memory alloy was firstly used commercially as a hydraulic coupling in the Grumman F14A in 1971. It is today used among others to improve structural behaviours such as buckling of composite plates in the aerospace vehicles. In this paper, finite element model and its source code for thermal post-buckling of shape memory alloy laminated composite plates is presented. The shape memory alloy wires induced stress that improved the strain energy, stiffness and thus the buckling behaviour of the composite plates. The finite element formulation catered the combined properties of the composite and shape memory alloys, the addition of the recovery stress and the temperature dependent properties of the shape memory alloys and the composite matrix. This study showed that by embedding shape memory alloy within layers of composite plates, post-buckling behaviours of composite plates can be improved substantially.


2021 ◽  
pp. 179-196
Author(s):  
Morteza Saadatmorad ◽  
Ramazan-Ali Jafari-Talookolaei ◽  
Mohammad-Hadi Pashaei ◽  
Samir Khatir ◽  
Magd Abdel Wahab

Sign in / Sign up

Export Citation Format

Share Document