post buckling
Recently Published Documents


TOTAL DOCUMENTS

1857
(FIVE YEARS 355)

H-INDEX

53
(FIVE YEARS 10)

2022 ◽  
Vol 172 ◽  
pp. 108834
Author(s):  
Guangxin Sun ◽  
Shengbo Zhu ◽  
Rumin Teng ◽  
Jiabin Sun ◽  
Zhenhuan Zhou ◽  
...  

2022 ◽  
Vol 190 ◽  
pp. 107117
Author(s):  
Kevin E. Augustyn ◽  
Spencer E. Quiel ◽  
Maria E.M. Garlock

10.29007/s1rd ◽  
2022 ◽  
Author(s):  
Minh Duc Nguyen ◽  
Thai Hien Nguyen

Nowadays in the construction of modem buildings, it is necessary to accommodate pipes and ducts necessary services, such as air conditioning, water supply, sewerage, electricity, computer networks, and telephone networks. Cellular members – steel I‐ shaped structural elements with circular web openings at regular intervals – have been used as beams for more than 35 years now. Although in the past already a large deal of research was performed into the subject of the behavior of cellular beams, almost no attention has been paid to the application of cellular members as columns. The column will be analyzed using the finite element method to calculate the critical load and compared with the Eurocode3 standard, web-post buckling, and frame using cellular member by FEM.


2022 ◽  
Author(s):  
Yancheng Meng ◽  
Henggao Xiang ◽  
Jianqiang Zhang ◽  
Zhili Hu ◽  
Jun Yin ◽  
...  

Abstract Stiff membranes on soft substrates may wrinkle and fold during compression1-11, but the strong post-buckling nonlinearity3,12 and the propensity of overall bending of these systems4,9,11 under large compression make the intriguing morphological evolution ill-controlled and less understood. Here, we present a simple peeling strategy that controllably makes stiff nanomembranes on soft microfilms wrinkled, then folded with a preset period, and ultimately fractured into regular ribbons. The fold and fracture periods exhibit a quantized, stepped dependence on the microfilm thickness, with the period doubled per step. The controlled wrinkle-to-fold-to-fractures transitions can be quantified by both computations and a scaling law, showing generality to different forms of compressive loading. This quantized wrinkle evolution deepens our understanding of complex behaviors of such natural and artificial systems as cerebral cortexes, skins, and coating materials, and opens a way to advanced manufacturing by fracturing large-area nanomembranes into uniformly shaped microflakes.


2022 ◽  
Vol 961 (1) ◽  
pp. 012095
Author(s):  
Mustafa Kamil Abbas ◽  
Hayder Wafi Al_Thabhawee

Abstract The main objective of this study is to compare the structural behavior of composite steel– concrete beams using cellular beams with and without steel ring stiffeners placed around the web openings. An IPE140 hot rolled I-section steel beam was used to create four specimens: one without openings (control beam); one without shear connectors (non-composite); a composite steel–concrete beam using a cellular beam without strengthening (CLB1); and a composite steel–concrete beam using a cellular beam (CLB4-R) with its openings strengthened by steel ring stiffeners with geometrical properties Br = 37mm and Tr = 5mm. CLB1 was fabricated with openings of 100mm diameter and a 1.23 expansion depth ratio, while CLB4-R was fabricated with openings of 130mm diameter, a 1.42 expansion depth ratio. Both beams were 1700mm in length with ten openings. The results of this experiment revealed that the loads applied to CLB1 and CLB4-R at deflection L/360 exceeded the load applied to the control specimen at the same deflection by 149.3% and 177.3%, respectively. The results revealed that the non-composite beam had an ultimate load 29% lower than that of the control beam. The ultimate load on CLB1 was 5.3% greater than that of the control beam, and failure occurred due to web-post buckling. While the ultimate load of the CLB4-R beam was 18.43% greater than that of the control beam, the Vierendeel mechanism was indicated as the failure mode.


Sign in / Sign up

Export Citation Format

Share Document