scholarly journals Minimal periods of holomorphic maps on complex tori

2012 ◽  
Vol 18 (12) ◽  
pp. 2059-2068 ◽  
Author(s):  
Jaume Llibre ◽  
Feng Rong

1978 ◽  
Vol 100 (3) ◽  
pp. 615 ◽  
Author(s):  
Mark L. Green


2021 ◽  
Vol 498 (2) ◽  
pp. 124951
Author(s):  
Hadi O. Alshammari ◽  
Zinaida A. Lykova
Keyword(s):  


2001 ◽  
Vol 52 (2) ◽  
pp. 249-259 ◽  
Author(s):  
K. Yamaguchi
Keyword(s):  




2017 ◽  
Vol 21 (4) ◽  
pp. 2419-2460 ◽  
Author(s):  
Giuseppe Pareschi ◽  
Mihnea Popa ◽  
Christian Schnell


2015 ◽  
Vol 07 (02) ◽  
pp. 293-307
Author(s):  
Indranil Biswas

Let G be a connected reductive complex affine algebraic group and K ⊂ G a maximal compact subgroup. Let M be a compact complex torus equipped with a flat Kähler structure and (EG, θ) a polystable Higgs G-bundle on M. Take any C∞ reduction of structure group EK ⊂ EG to the subgroup K that solves the Yang–Mills equation for (EG, θ). We prove that the principal G-bundle EG is polystable and the above reduction EK solves the Einstein–Hermitian equation for EG. We also prove that for a semistable (respectively, polystable) Higgs G-bundle (EG, θ) on a compact connected Calabi–Yau manifold, the underlying principal G-bundle EG is semistable (respectively, polystable).



Sign in / Sign up

Export Citation Format

Share Document