Synthesis, In Vitro Biological Evaluation, and Molecular Docking Studies of Novel Biphenyl Chalcone Derivatives as Antimicrobial Agents

Author(s):  
Serdar Burmaoglu ◽  
Elif Akin Kazancioglu ◽  
Mustafa Z. Kazancioglu ◽  
Mehmet Abdullah Alagoz ◽  
Aylin Dogen ◽  
...  
2020 ◽  
Author(s):  
Mohsinul Mulk Bacha ◽  
Humaira Nadeem ◽  
Shafiq Ur Rehman ◽  
Sadia Sarwar ◽  
Aqeel Imran ◽  
...  

Abstract In diabetes, increased accumulation of sorbitol has been associated with diabetic complications through polyol pathway. Aldose reductase (AR) is one of the key factors involved in reduction of glucose to sorbitol, thereby its inhibition is considered to be important for the management of diabetic complications. In the present study, a series of seven 4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetamide derivatives 3(a-g) were synthesized by the reaction of 5-(4-hydroxy-3-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2a) and 5-(4-methoxybenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl acetic acid (2b) with different amines. The synthesized compounds 3(a-g) were investigated for their in vitro aldehyde reductase (ALR1) and aldose reductase (ALR2) enzyme inhibitory potential. Compound 3c, 3d, 3e, and 3f showed ALR1 inhibition at lower micromolar concentration whereas all the compounds were more active than the standard inhibitor valproic acid. Most of the compounds were active against ALR2 but compound 3a and 3f showed higher inhibition than the standard drug sulindac. Overall the most potent compound against aldose reductase was 3f with an inhibitory concentration of 0.12 ± 0.01 µM. In vitro results showed that vanillin derivatives exhibited better activity against both aldehyde reductase and aldose reductase. The molecular docking studies were carried out to investigate the binding affinities of synthesized derivatives with both ALR1 and ALR2.


2020 ◽  
Vol 1220 ◽  
pp. 128687
Author(s):  
Vikrant Patil ◽  
Anurag Noonikara-Poyil ◽  
Shrinivas D. Joshi ◽  
Shivaputra A. Patil ◽  
Siddappa A. Patil ◽  
...  

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 178 ◽  
Author(s):  
Mahadev Patil ◽  
Anurag Noonikara-Poyil ◽  
Shrinivas D. Joshi ◽  
Shivaputra A. Patil ◽  
Siddappa A. Patil ◽  
...  

A series of new urea derivatives, containing aryl moieties as potential antimicrobial agents, were designed, synthesized, and characterized by 1H NMR, 13C NMR, FT-IR, and LCMS spectral techniques. All newly synthesized compounds were screened in vitro against five bacterial strains (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus) and two fungal strains (Candida albicans and Cryptococcus neoformans). Variable levels of interaction were observed for these urea derivatives. However, and of major importance, many of these molecules exhibited promising growth inhibition against Acinetobacter baumannii. In particular, to our delight, the adamantyl urea adduct 3l demonstrated outstanding growth inhibition (94.5%) towards Acinetobacter baumannii. In light of this discovery, molecular docking studies were performed in order to elucidate the binding interaction mechanisms of the most active compounds, as reported herein.


2019 ◽  
Vol 15 (7) ◽  
pp. 790-800 ◽  
Author(s):  
Rakesh Kumar ◽  
Ritika Sharma ◽  
Inder Kumar ◽  
Pooja Upadhyay ◽  
Ankit Kumar Dhiman ◽  
...  

Background: Malaria remains a common life-threatening infectious disease across the globe due to the development of resistance by Plasmodium parasite against most antimalarial drugs. The situation demands new and effective drug candidates against Plasmodium. Objectives: The objective of this study is to design, synthesize and test novel quinoline based molecules against the malaria parasite. Methods: C2 and C8 modified quinoline analogs obtained via C-H bond functionalization approach were synthesized and evaluated for inhibition of growth of P. falciparum grown in human red blood cells using SYBR Green microtiter plate based screening. Computational molecular docking studies were carried out with top fourteen molecules using Autodoc software. Results: The biological evaluation results revealed good activity of quinoline-8-acrylate 3f (IC50 14.2 µM), and the 2-quinoline-α-hydroxypropionates 4b (IC50 6.5 µM), 4j (IC50 5.5 µM) and 4g (IC50 9.5 µM), against chloroquine sensitive Pf3D7 strain. Top fourteen molecules were screened also against chloroquine resistant Pf INDO strain and the observed resistant indices were found to lie between 1 and 7.58. Computational molecular docking studies indicated a unique mode of binding of these quinolines to Falcipain-2 and heme moiety, indicating these to be the probable targets of their antiplasmodial action. Conclusion: An important finding of our work is the fact that unlike Chloroquine which shows a resistance Index of 15, the resistance indices for the most promising molecules studied by us were about one indicating equal potency against drug sensitive and resistant strains of the malaria parasite.


Sign in / Sign up

Export Citation Format

Share Document