molecular docking
Recently Published Documents


TOTAL DOCUMENTS

12697
(FIVE YEARS 9522)

H-INDEX

82
(FIVE YEARS 37)

2024 ◽  
Vol 84 ◽  
Author(s):  
M. F. R. Dias ◽  
F. L. L. Oliveira ◽  
V. S. Pontes ◽  
M. L. Silva

Abstract In recent years, the development of high-throughput technologies for obtaining sequence data leveraged the possibility of analysis of protein data in silico. However, when it comes to viral polyprotein interaction studies, there is a gap in the representation of those proteins, given their size and length. The prepare for studies using state-of-the-art techniques such as Machine Learning, a good representation of such proteins is a must. We present an alternative to this problem, implementing a fragmentation and modeling protocol to prepare those polyproteins in the form of peptide fragments. Such procedure is made by several scripts, implemented together on the workflow we call PolyPRep, a tool written in Python script and available in GitHub. This software is freely available only for noncommercial users.


2022 ◽  
Vol 146 ◽  
pp. 776-788
Author(s):  
Sangeetha Thangavelu ◽  
Balamuralikrishnan Balasubramanian ◽  
Sampathkumar Palanisamy ◽  
Velayuthaprabhu Shanmugam ◽  
Senthilkumar Natchiappan ◽  
...  

2023 ◽  
Vol 83 ◽  
Author(s):  
S. Muhammad ◽  
M. F. Maqbool ◽  
A. G. Al-Sehemi ◽  
A. Iqbal ◽  
M. Khan ◽  
...  

Abstract In the current report, we studied the possible inhibitors of COVID-19 from bioactive constituents of Centaurea jacea using a threefold approach consisting of quantum chemical, molecular docking and molecular dynamic techniques. Centaurea jacea is a perennial herb often used in folk medicines of dermatological complaints and fever. Moreover, anticancer, antioxidant, antibacterial and antiviral properties of its bioactive compounds are also reported. The Mpro (Main proteases) was docked with different compounds of Centaurea jacea through molecular docking. All the studied compounds including apigenin, axillarin, Centaureidin, Cirsiliol, Eupatorin and Isokaempferide, show suitable binding affinities to the binding site of SARS-CoV-2 main protease with their binding energies -6.7 kcal/mol, -7.4 kcal/mol, -7.0 kcal/mol, -5.8 kcal/mol, -6.2 kcal/mol and -6.8 kcal/mol, respectively. Among all studied compounds, axillarin was found to have maximum inhibitor efficiency followed by Centaureidin, Isokaempferide, Apigenin, Eupatorin and Cirsiliol. Our results suggested that axillarin binds with the most crucial catalytic residues CYS145 and HIS41 of the Mpro, moreover axillarin shows 5 hydrogen bond interactions and 5 hydrophobic interactions with various residues of Mpro. Furthermore, the molecular dynamic calculations over 60 ns (6×106 femtosecond) time scale also shown significant insights into the binding effects of axillarin with Mpro of SARS-CoV-2 by imitating protein like aqueous environment. From molecular dynamic calculations, the RMSD and RMSF computations indicate the stability and dynamics of the best docked complex in aqueous environment. The ADME properties and toxicity prediction analysis of axillarin also recommended it as safe drug candidate. Further, in vivo and in vitro investigations are essential to ensure the anti SARS-CoV-2 activity of all bioactive compounds particularly axillarin to encourage preventive use of Centaurea jacea against COVID-19 infections.


2022 ◽  
Vol 1249 ◽  
pp. 131551
Author(s):  
El Sayed H. El Ashry ◽  
Laila F. Awad ◽  
Mohamed E.I. Badawy ◽  
Entsar I. Rabea ◽  
Nihal A. Ibrahim ◽  
...  

2022 ◽  
Vol 146 ◽  
pp. 112611
Author(s):  
Lenh Vo Van ◽  
Em Canh Pham ◽  
Cuong Viet Nguyen ◽  
Ngoc Thoi Nguyen Duong ◽  
Tuong Vi Le Thi ◽  
...  

2022 ◽  
Vol 1249 ◽  
pp. 131597
Author(s):  
Malhari Nagtilak ◽  
Satish Pawar ◽  
Sandip Labade ◽  
Chandrakant Khilare ◽  
Shankutala Sawant

2022 ◽  
Vol 9 ◽  
Author(s):  
Zackary Falls ◽  
Jonathan Fine ◽  
Gaurav Chopra ◽  
Ram Samudrala

The human immunodeficiency virus 1 (HIV-1) protease is an important target for treating HIV infection. Our goal was to benchmark a novel molecular docking protocol and determine its effectiveness as a therapeutic repurposing tool by predicting inhibitor potency to this target. To accomplish this, we predicted the relative binding scores of various inhibitors of the protease using CANDOCK, a hierarchical fragment-based docking protocol with a knowledge-based scoring function. We first used a set of 30 HIV-1 protease complexes as an initial benchmark to optimize the parameters for CANDOCK. We then compared the results from CANDOCK to two other popular molecular docking protocols Autodock Vina and Smina. Our results showed that CANDOCK is superior to both of these protocols in terms of correlating predicted binding scores to experimental binding affinities with a Pearson coefficient of 0.62 compared to 0.48 and 0.49 for Vina and Smina, respectively. We further leveraged the Database of Useful Decoys: Enhanced (DUD-E) HIV protease set to ascertain the effectiveness of each protocol in discriminating active versus decoy ligands for proteases. CANDOCK again displayed better efficacy over the other commonly used molecular docking protocols with area under the receiver operating characteristic curve (AUROC) of 0.94 compared to 0.71 and 0.74 for Vina and Smina. These findings support the utility of CANDOCK to help discover novel therapeutics that effectively inhibit HIV-1 and possibly other retroviral proteases.


2022 ◽  
Vol 8 ◽  
Author(s):  
Entesar A. Hassan ◽  
Ihsan A. Shehadi ◽  
Awatef M. Elmaghraby ◽  
Hadir M. Mostafa ◽  
Salem E. Zayed ◽  
...  

In the present study, a general approach for the synthesis of 1-(1H-indol-3-yl)-3,3-dimercaptoprop-2-en-1-one (1) and 5-(1H-indol-3-yl)-3H-1,2-dithiole-3-thione (2) was performed. They are currently used as efficient precursors for the synthesis of some new compounds bearing five- and/or six-membered heterocyclic moieties, e.g., chromenol (3, 4), 3,4-dihydroquinoline (7, 8) and thiopyran (10, 12)-based indole core. In addition, molecular docking studies were achieved, which showed that all the newly synthesized compounds are interacting with the active site region of the target enzymes, the targets UDP-N-acetylmuramatel-alanine ligase (MurC), and human lanosterol14α-demethylase, through hydrogen bonds and pi-stacked interactions. Among these docked ligand molecules, the compound (9) was found to have the minimum binding energy (−11.5 and −8.5 Kcal/mol) as compared to the standard drug ampicillin (−8.0 and −8.1 Kcal/mol) against the target enzymes UDP-N-acetylmuramatel-alanine ligase (MurC), and Human lanosterol14α-demethylase, respectively. Subsequently, all new synthesized analogues were screened for their antibacterial activities against Gram-positive (Bacillus subtilis), and Gram-negative bacteria (Escherichia coli), as well as for antifungal activities against Candida albicans and Aspergillus flavus. The obtained data suggest that the compounds exhibited good to excellent activity against bacterial and fungi strains. The compound (E)-2-(6-(1H-indole-3-carbonyl)-5-thioxotetrahydrothieno [3,2-b]furan-2(3H)-ylidene)-3-(1H-indol-3-yl)-3-oxopropanedithioic acid (9) showed a high binding affinity as well as an excellent biological activity. Therefore, it could serve as the lead for further optimization and to arrive at potential antimicrobial agent.


Sign in / Sign up

Export Citation Format

Share Document