scholarly journals Some modifications of low-dimensional simplex evolution and their convergence

2013 ◽  
Vol 28 (1) ◽  
pp. 54-81 ◽  
Author(s):  
Changtong Luo ◽  
Shao-Liang Zhang ◽  
Bo Yu
2016 ◽  
Vol 7 (4) ◽  
pp. 23-51 ◽  
Author(s):  
Mahamed G.H. Omran ◽  
Maurice Clerc

This paper proposes a new population-based simplex method for continuous function optimization. The proposed method, called Adaptive Population-based Simplex (APS), is inspired by the Low-Dimensional Simplex Evolution (LDSE) method. LDSE is a recent optimization method, which uses the reflection and contraction steps of the Nelder-Mead Simplex method. Like LDSE, APS uses a population from which different simplexes are selected. In addition, a local search is performed using a hyper-sphere generated around the best individual in a simplex. APS is a tuning-free approach, it is easy to code and easy to understand. APS is compared with five state-of-the-art approaches on 23 functions where five of them are quasi-real-world problems. The experimental results show that APS generally performs better than the other methods on the test functions. In addition, a scalability study has been conducted and the results show that APS can work well with relatively high-dimensional problems.


2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


Sign in / Sign up

Export Citation Format

Share Document