Discrimination of Seafloor Sediment Properties by VWA

2007 ◽  
Vol 25 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Bo Lu ◽  
Ganxian Li ◽  
Shaojian Huang ◽  
Qiang Liu
2004 ◽  
Vol 209 (1-4) ◽  
pp. 147-172 ◽  
Author(s):  
John A. Goff ◽  
Barbara J. Kraft ◽  
Larry A. Mayer ◽  
Steven G. Schock ◽  
Christopher K. Sommerfield ◽  
...  

2020 ◽  
Vol 648 ◽  
pp. 19-38
Author(s):  
AI Azovsky ◽  
YA Mazei ◽  
MA Saburova ◽  
PV Sapozhnikov

Diversity and composition of benthic diatom algae and ciliates were studied at several beaches along the White and Barents seas: from highly exposed, reflective beaches with coarse-grained sands to sheltered, dissipative silty-sandy flats. For diatoms, the epipelic to epipsammic species abundance ratio was significantly correlated with the beach index and mean particle size, while neither α-diversity measures nor mean cell length were related to beach properties. In contrast, most of the characteristics of ciliate assemblages (diversity, total abundance and biomass, mean individual weight and percentage of karyorelictids) demonstrated a strong correlation to beach properties, remaining low at exposed beaches but increasing sharply in more sheltered conditions. β-diversity did not correlate with beach properties for either diatoms or ciliates. We suggest that wave action and sediment properties are the main drivers controlling the diversity and composition of the intertidal microbenthos. Diatoms and ciliates, however, demonstrated divergent response to these factors. Epipelic and epipsammic diatoms exhibited 2 different strategies to adapt to their environments and therefore were complementarily distributed along the environmental gradient and compensated for each other in diversity. Most ciliates demonstrated a similar mode of habitat selection but differed in their degree of tolerance. Euryporal (including mesoporal) species were relatively tolerant to wave action and therefore occurred under a wide range of beach conditions, though their abundance and diversity were highest in fine, relatively stable sediments on sheltered beaches, whereas the specific interstitial (i.e. genuine microporal) species were mostly restricted to only these habitats.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1599
Author(s):  
Annika Fiskal ◽  
Aixala Gaillard ◽  
Sebastien Giroud ◽  
Dejan Malcic ◽  
Prachi Joshi ◽  
...  

Macroinvertebrates are widespread in lake sediments and alter sedimentary properties through their activity (bioturbation). Understanding the interactions between bioturbation and sediment properties is important given that lakes are important sinks and sources of carbon and nutrients. We studied the biogeochemical impact of macrofauna on surface sediments in 3-month-long mesocosm experiments conducted using sediment cores from a hypoxic, macrofauna-free lake basin. Experimental units consisted of hypoxic controls, oxic treatments, and oxic treatments that were experimentally colonized with chironomid larvae or tubificid worms. Overall, the presence of O2 in bottom water had the strongest geochemical effect and led to oxidation of sediments down to 2 cm depth. Relative to macrofauna-free oxic treatments, chironomid larvae increased sediment pore water concentrations of nitrate and sulfate and lowered porewater concentrations of reduced metals (Fe2+, Mn2+), presumably by burrow ventilation, whereas tubificid worms increased the redox potential, possibly through sediment reworking. Microbial communities were very similar across oxic treatments; however, the fractions of α-, β-, and γ-Proteobacteria and Sphingobacteriia increased, whereas those of Actinobacteria, Planctomycetes, and Omnitrophica decreased compared to hypoxic controls. Sediment microbial communities were, moreover, distinct from those of macrofaunal tubes or feces. We suggest that, under the conditions studied, bottom water oxygenation has a stronger biogeochemical impact on lacustrine surface sediments than macrofaunal bioturbation.


Sign in / Sign up

Export Citation Format

Share Document