scholarly journals Reverse transcriptase domain sequences from tree peony (Paeonia suffruticosa) long terminal repeat retrotransposons: sequence characterization and phylogenetic analysis

2014 ◽  
Vol 28 (3) ◽  
pp. 438-446 ◽  
Author(s):  
Da-Long Guo ◽  
Xiao-Gai Hou ◽  
Tian Jia
2000 ◽  
Vol 66 (8) ◽  
pp. 3642-3645 ◽  
Author(s):  
Hitoshi Murata ◽  
Akiyoshi Yamada

ABSTRACT We cloned an intact copy of a long terminal repeat retroelement designated marY1 from the ectomycorrhizal basidiomyceteTricholoma matsutake. The reverse transcriptase domain is found in T. matsutake and Tricholoma magnivelare worldwide. This finding suggests that retroelements associate with ectomycorrhizal basidiomycetes and may be useful as genetic markers for identification, phylogenetic analysis, and mutagenesis of this fungal group.


1988 ◽  
Vol 8 (1) ◽  
pp. 114-123 ◽  
Author(s):  
Y Xiong ◽  
T H Eickbush

Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons.


1988 ◽  
Vol 8 (1) ◽  
pp. 114-123
Author(s):  
Y Xiong ◽  
T H Eickbush

Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons.


1995 ◽  
Vol 140 (1) ◽  
pp. 41-52 ◽  
Author(s):  
H. Yamada ◽  
T. Miyazawa ◽  
K. Tomonaga ◽  
Y. Kawaguchi ◽  
K. Maeda ◽  
...  

Mobile DNA ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shujun Ou ◽  
Ning Jiang

AbstractAnnotation of plant genomes is still a challenging task due to the abundance of repetitive sequences, especially long terminal repeat (LTR) retrotransposons. LTR_FINDER is a widely used program for the identification of LTR retrotransposons but its application on large genomes is hindered by its single-threaded processes. Here we report an accessory program that allows parallel operation of LTR_FINDER, resulting in up to 8500X faster identification of LTR elements. It takes only 72 min to process the 14.5 Gb bread wheat (Triticum aestivum) genome in comparison to 1.16 years required by the original sequential version. LTR_FINDER_parallel is freely available at https://github.com/oushujun/LTR_FINDER_parallel.


Sign in / Sign up

Export Citation Format

Share Document