Controlling spatial attention without central attentional resources: Evidence from event-related potentials

2011 ◽  
Vol 19 (1) ◽  
pp. 37-78 ◽  
Author(s):  
Mei-Ching Lien ◽  
Khara Croswaite ◽  
Eric Ruthruff
2021 ◽  
Vol 4 ◽  
Author(s):  
Vasileios Ioakeimidis ◽  
Nareg Khachatoorian ◽  
Corinna Haenschel ◽  
Thomas A. Papathomas ◽  
Attila Farkas ◽  
...  

Abstract The hollow-mask illusion is an optical illusion where a concave face is perceived as convex. It has been demonstrated that individuals with schizophrenia and anxiety are less susceptible to the illusion than controls. Previous research has shown that the P300 and P600 event-related potentials (ERPs) are affected in individuals with schizophrenia. Here, we examined whether individual differences in neuroticism and anxiety scores, traits that have been suggested to be risk factors for schizophrenia and anxiety disorders, affect ERPs of healthy participants while they view concave faces. Our results confirm that the participants were susceptible to the illusion, misperceiving concave faces as convex. We additionally demonstrate significant interactions of the concave condition with state anxiety in central and parietal electrodes for P300 and parietal areas for P600, but not with neuroticism and trait anxiety. The state anxiety interactions were driven by low-state anxiety participants showing lower amplitudes for concave faces compared to convex. The P300 and P600 amplitudes were smaller when a concave face activated a convex face memory representation, since the stimulus did not match the active representation. The opposite pattern was evident in high-state anxiety participants in regard to state anxiety interaction and the hollow-mask illusion, demonstrating larger P300 and P600 amplitudes to concave faces suggesting impaired late information processing in this group. This could be explained by impaired allocation of attentional resources in high-state anxiety leading to hyperarousal to concave faces that are unexpected mismatches to standard memory representations, as opposed to expected convex faces.


2020 ◽  
Author(s):  
Xiangfei Hong ◽  
Ke Bo ◽  
Sreenivasan Meyyapan ◽  
Shanbao Tong ◽  
Mingzhou Ding

AbstractEvent-related potentials (ERPs) are used extensively to investigate the neural mechanisms of attention control and selection. The commonly applied univariate ERP approach, however, has left important questions inadequately answered. Here, we addressed two questions by applying multivariate pattern classification to multichannel ERPs in two spatial-cueing experiments (N = 56 in total): (1) impact of cueing strategies (instructional vs. probabilistic) and (2) neural and behavioral effects of individual differences. Following the cue onset, the decoding accuracy (cue left vs. cue right) began to rise above chance level earlier and remained higher in instructional cueing (∼80 ms) than in probabilistic cueing (∼160 ms), suggesting that unilateral attention focus leads to earlier and more distinct formation of the attentional set. A similar temporal sequence was also found for target-related processing (cued targets vs. uncued targets), suggesting earlier and stronger attention selection under instructional cueing. Across the two experiments, individuals with higher decoding accuracy during ∼460-660 ms post-cue showed higher magnitude of attentional modulation of target-evoked N1 amplitude, suggesting that better formation of anticipatory attentional state leads to better target processing. During target processing, individual difference in decoding accuracy was positively associated with behavioral performance (reaction time), suggesting that stronger selection of task-relevant information leads to better behavioral performance. Taken together, multichannel ERPs combined with machine learning decoding yields new insights into attention control and selection that are not possible with the univariate ERP approach, and along with the univariate ERP approach, provides a more comprehensive methodology to the study of visual spatial attention.


1987 ◽  
Vol 24 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Kimmo Alho ◽  
Nandor Donauer ◽  
Petri Paavilainen ◽  
Kalevi Reinikainen ◽  
Mikko Sams ◽  
...  

1999 ◽  
Vol 354 (1387) ◽  
pp. 1135-1144 ◽  
Author(s):  
Scott Makeig ◽  
Marissa Westerfield ◽  
Jeanne Townsend ◽  
Tzyy-Ping Jung ◽  
Eric Courchesne ◽  
...  

Spatial visual attention modulates the first negative–going deflection in the human averaged event–related potential (ERP) in response to visual target and non–target stimuli (the N1 complex). Here we demonstrate a decomposition of N1 into functionally independent subcomponents with functionally distinct relations to task and stimulus conditions. ERPs were collected from 20 subjects in response to visual target and non–target stimuli presented at five attended and non–attended screen locations. Independent component analysis, a new method for blind source separation, was trained simultaneously on 500 ms grand average responses from all 25 stimulus–attention conditions and decomposed the non–target N1 complexes into five spatially fixed, temporally independent and physiologically plausible components. Activity of an early, laterally symmetrical component pair (N1a R and N1a L ) was evoked by the left and right visual field stimuli, respectively. Component N1a R peaked ca. 9 ms earlier than N1a L . Central stimuli evoked both components with the same peak latency difference, producing a bilateral scalp distribution. The amplitudes of these components were not reliably augmented by spatial attention. Stimuli in the right visual field evoked activity in a spatio–temporally overlapping bilateral component (N1b) that peaked at ca. 180 ms and was strongly enhanced by attention. Stimuli presented at unattended locations evoked a fourth component (P2a) peaking near 240 ms. A fifth component (P3f) was evoked only by targets presented in either visual field. The distinct response patterns of these components across the array of stimulus and attention conditions suggest that they reflect activity in functionally independent brain systems involved in processing attended and unattended visuospatial events.


Sign in / Sign up

Export Citation Format

Share Document