Probabilistic Seismic Hazard Model of West Bengal, India

2016 ◽  
Vol 21 (7) ◽  
pp. 1113-1157 ◽  
Author(s):  
Soumya K. Maiti ◽  
Sankar K. Nath ◽  
Manik D. Adhikari ◽  
Nishtha Srivastava ◽  
Probal Sengupta ◽  
...  
2016 ◽  
Vol 87 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
Matthew C. Gerstenberger ◽  
David A. Rhoades ◽  
Graeme H. McVerry

Author(s):  
Mark Stirling ◽  
Matthew Gerstenberger ◽  
Nicola Litchfield ◽  
Graeme McVerry ◽  
Warwick Smith ◽  
...  

We present a new probabilistic seismic hazard model for the Canterbury region, the model superseding the earlier model of Stirling et al. (1999, 2001). The updated model incorporates new onshore and offshore fault data, new seismicity data, new methods for the earthquake source parameterisation of both datasets, and new methods for estimation of the expected levels of Modified Mercalli Intensity (MMI) across the region. While the overall regional pattern of estimated hazard has not changed since the earlier seismic hazard model, there have been slight reductions in hazard in some areas (western Canterbury Plains and eastern Southern Alps), coupled with significant increases in hazard in one area (immediately northeast of Kaikoura). The changes to estimated acceleration for the new versus older model serve to show the extent that major changes to a multidisciplinary source model may impact the final estimates of hazard, while the new MMI estimates show the added impact of a new methodology for calculating MMI hazard.


2020 ◽  
Vol 13 (13) ◽  
Author(s):  
Ahmed Deif ◽  
Issa El-Hussain ◽  
Yousuf Alshijbi ◽  
Adel Mohamed El-Shahat Mohamed

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Rakesh Mohindra ◽  
Anand K. S. Nair ◽  
Sushil Gupta ◽  
Ujjwal Sur ◽  
Vladimir Sokolov

A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA) was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years) ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.


2015 ◽  
Vol 13 (12) ◽  
pp. 3597-3623 ◽  
Author(s):  
J. W. Pappin ◽  
R. C. H. Koo ◽  
H. Jiang ◽  
J. S. H. Kwan ◽  
Y. B. Yu ◽  
...  

2020 ◽  
Vol 36 (1_suppl) ◽  
pp. 181-209 ◽  
Author(s):  
Yufang Rong ◽  
Xiwei Xu ◽  
Jia Cheng ◽  
Guihua Chen ◽  
Harold Magistrale ◽  
...  

We construct a probabilistic seismic hazard model for mainland China by integrating historical earthquakes, active faults, and geodetic strain rates. We delineate large seismic source zones based on geologic and seismotectonic characteristics. For each source zone, a tapered Gutenberg–Richter (TGR) distribution is used to model the total seismic activity rates. The TGR a- and b-values are calculated using a new earthquake catalog, while corner magnitudes are constrained using the seismic moment rate inferred from a geodetic strain rate model. For hazard calculations, the total TGR distribution is split into two parts, with smaller ( MW < 6.5) earthquakes being distributed within the zone using a smoothed seismicity method, and larger earthquakes put both onto active faults, based on fault slip rates and dimensions, and into the zone as background seismicity. We select ground motion models by performing residual analysis using ground motion recordings. Site amplifications are considered based on a site condition map developed using geology as a proxy. The resulting seismic hazard is consistent with the fifth-generation national seismic hazard model for most major cities.


Sign in / Sign up

Export Citation Format

Share Document