Process capability analysis of binder jetting 3D printing process for fabrication of calcium sulphate based porous bone scaffolds.

Author(s):  
Yashwant Kumar Modi ◽  
Kiran Kumar Sahu
2010 ◽  
Vol 3 (S1) ◽  
pp. 531-534
Author(s):  
Maja Rujnić-Sokele ◽  
Mladen Šercer ◽  
Damir Godec

Author(s):  
Stoyan Stoyanov ◽  
Ying Kit Tang ◽  
Chris Bailey ◽  
Robert Evans ◽  
Silvia Marson ◽  
...  

Author(s):  
Rishi Thakkar ◽  
Yu Zhang ◽  
Jiaxiang Zhang ◽  
Mohammed Maniruzzaman

AbstractThis study demonstrated the first case of combining novel continuous granulation with powder-based pharmaceutical 3-dimensional (3D) printing processes to enhance the dissolution rate and physical properties of a poorly water-soluble drug. Powder bed fusion (PBF) and binder jetting 3D printing processes have gained much attention in pharmaceutical dosage form manufacturing in recent times. Although powder bed-based 3D printing platforms have been known to face printing and uniformity problems due to the inherent poor flow properties of the pharmaceutical physical mixtures (feedstock). Moreover, techniques such as binder jetting currently do not provide any solubility benefits to active pharmaceutical ingredients (APIs) with poor aqueous solubility (>40% of marketed drugs). For this study, a hot-melt extrusion-based versatile granulation process equipped with UV-Vis process analytical technology (PAT) tools for the in-line monitoring of critical quality attributes (i.e., solid-state) of indomethacin was developed. The collected granules with enhanced flow properties were mixed with vinylpyrrolidone-vinyl acetate copolymer and a conductive excipient for efficient sintering. These mixtures were further characterized for their bulk properties observing an excellent flow and later subjected to a PBF-3D printing process. The physical mixtures, processed granules, and printed tablets were characterized using conventional as well as advanced solid-state characterization. These characterizations revealed the amorphous nature of the drug in the processed granules and printed tablets. Further, the in vitro release testing of the tablets with produced granules as a reference standard depicted a notable solubility advantage (100% drug released in 5 minutes at >pH 6.8) over the pure drug and the physical mixture. Our developed system known as DosePlus combines innovative continuous granulation and PBF-3D printing process which can potentially improve the physical properties of the bulk drug and formulations in comparison to when used in isolation. This process can further find application in continuous manufacturing of granules and additive manufacturing of pharmaceuticals to produce dosage forms with excellent uniformity and solubility advantage.Abstract Figure


2021 ◽  
Vol 25 (8) ◽  
pp. 1477-1482
Author(s):  
O.F. Odeyinka ◽  
F.O. Ogunwolu ◽  
O.P. Popoola ◽  
T.O. Oyedokun

Process capability analysis combines statistical tools and control charts with good engineering judgment to interpret and analyze the data representing a process. This work analyzes the process capability of a polypropylene bag producing company. The case study organization uses two plants for production and data was collected over a period of nine months for this study. Analysis showed that the output spread of plant 1 was greater than the specification interval spread which implies poor capability. There are non-conforming parts below the Lower Specification Limit (LSL: 500,000 metres) and above the Upper Specification Limit (USL: 600,000 metres) and that the output requires improvement. Similarly, the capability analysis of plant 2 shows that the overall output spread is greater than the specification interval spread (poor capability). The output centre in the specification and overall interval are vertically aligned, thus specifying that the output from plant 2 is also process centered and requires improvement. Recommendations were made to improve the outputs from each production plant.


Sign in / Sign up

Export Citation Format

Share Document