process capability analysis
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 25 (8) ◽  
pp. 1477-1482
Author(s):  
O.F. Odeyinka ◽  
F.O. Ogunwolu ◽  
O.P. Popoola ◽  
T.O. Oyedokun

Process capability analysis combines statistical tools and control charts with good engineering judgment to interpret and analyze the data representing a process. This work analyzes the process capability of a polypropylene bag producing company. The case study organization uses two plants for production and data was collected over a period of nine months for this study. Analysis showed that the output spread of plant 1 was greater than the specification interval spread which implies poor capability. There are non-conforming parts below the Lower Specification Limit (LSL: 500,000 metres) and above the Upper Specification Limit (USL: 600,000 metres) and that the output requires improvement. Similarly, the capability analysis of plant 2 shows that the overall output spread is greater than the specification interval spread (poor capability). The output centre in the specification and overall interval are vertically aligned, thus specifying that the output from plant 2 is also process centered and requires improvement. Recommendations were made to improve the outputs from each production plant.


Author(s):  
Roxana González Álvarez ◽  
Aníbal Barrera García ◽  
Ana Beatriz Guerra Morffi ◽  
Juan Felipe Medina Mendieta

Statistical quality control is a set of tools and techniques that allows to verify, monitor and control the variability of processes to improve product quality and business competitiveness. The objective of this study was to evaluate the pasta production process of a company that belongs to the food industry sector in terms of stability and compliance of quality specifications. The Six Sigma improvement methodology was used, which focuses on identifying and eliminating the causes of variation in the processes. Data collection was accomplished by the use of different techniques, such as: interviews, brainstorming, review of documents, teamwork and direct observation. In addition, process documentation techniques and classical quality tools including Pareto chart, control charts, process capability analysis, histogram, Ishikawa diagram and experimental design were used. Multivariate data reduction techniques were also applied. The results showed for the quality characteristic Humidity that the process is out of statistical control and it is uncapable to meet the required specifications, for which the causes were investigated and improvement actions were proposed, achieving an increase in the sigma quality level.


2021 ◽  
Author(s):  
Selin Yalçın ◽  
Ihsan Kaya

Abstract Process capability analysis (PCA) is an important statistical analysis approach for measuring and analyzing the ability of the process to meet specifications. This analysis has been applied by producing process capability indices (PCIs). \({C}_{p}\) and \({C}_{pk}\) are the most commonly used PCIs for this aim. Although they are completely effective statistics to analyze process’ capability, the complexity of the production processes based on uncertainty arising from human thinking, incomplete or vague information makes it difficult to analyze the process capability with precise values. When there is uncertain, complex, incomplete and inaccurate information, the capability of the process is successfully analyzed by using the fuzzy sets. Neutrosophic sets (NSs), one of the new fuzzy set extensions, have a significant role in modeling uncertainty, since they contain the membership functions of truth, indeterminacy, and falsity definitions rather than an only membership function. This feature provides a strong advantage for modeling uncertainty. In this paper, PCA has been performed based on NSs to overcome uncertainties of the process. For this purpose, specification limits (SLs) have been reconsidered by using NSs and two of the well-known process capability indices (PCIs) named \({C}_{p}\) and \({C}_{pk}\) have been reformulated. Finally, the neutrosophic process capability indices (NPCIs) named \({C}_{p}\) \(\left({\tilde{\stackrel{⃛}{C}}}_{p}\right)\) and \({C}_{pk}\) \(\left({\tilde{\stackrel{⃛}{C}}}_{pk}\right)\) have been derived for three cases that are created by defining SLs. Additionally, the obtained NPCIs have also been applied and confirmed on real case problems from automotive industry. The obtained results show that the NPCIs support the quality engineers to easily define SLs and obtain more flexible and realistic evaluations for PCA.


2021 ◽  
pp. 1-13
Author(s):  
Elif Haktanır ◽  
Cengiz Kahraman

Process capability analysis (PCA) is a tool for measuring a process’s ability to meet specification limits (SLs), which the customers define. Process capability indices (PCIs) are used for establishing a relationship between SLs and the considered process’s ability to meet these limits as an index. PCA compares the output of a process with the SLs through these capability indices. If the customers’ needs contain vague or imprecise terms, the classical methods are inadequate to solve the problem. In such cases, the information can be processed by the fuzzy set theory. Recently, ordinary fuzzy sets have been extended to several new types of fuzzy sets such as intuitionistic fuzzy sets, Pythagorean fuzzy sets, picture fuzzy sets, and spherical fuzzy sets. In this paper, a new extension of intuitionistic fuzzy sets, which is called penthagorean fuzzy sets, is proposed, and penthagorean fuzzy PCIs are developed. The design of production processes for COVID-19 has gained tremendous importance today. Surgical mask production and design have been chosen as the application area of the penthagorean fuzzy PCIs developed in this paper. PCA of the two machines used in surgical mask production has been handled under the penthagorean fuzzy environment.


2021 ◽  
pp. 589-595
Author(s):  
Na Zhao ◽  
Yumin He ◽  
Mingxin Zhang ◽  
Gaosheng Cui ◽  
Fuman Pan

Sign in / Sign up

Export Citation Format

Share Document