The Effects of Frequency, Repetition and Stimulus Quality in Visual Word Recognition

1984 ◽  
Vol 36 (3) ◽  
pp. 507-518 ◽  
Author(s):  
Dennis Norris

This paper describes a lexical decision experiment, which examined the relation between word frequency, repetition and stimulus quality. In contrast to earlier studies (Stanners, Jastrzembski and Westbrook, 1975; Becker and Killion, 1977), frequency and stimulus quality were found to interact. The implications of this result for models of word recognition are discussed within the framework of Becker's verification model.

2018 ◽  
Vol 39 (2) ◽  
pp. 279-291 ◽  
Author(s):  
Manuel Roldán ◽  
Ana Marcet ◽  
Manuel Perea

AbstractFor simplicity, models of visual-word recognition have focused on printed words composed of separated letters, thus overlooking the processing of cursive words. Manso de Zuniga, Humphreys, and Evett (1991) claimed that there is an early “cursive normalization” encoding stage when processing written words with joined letters. To test this claim, we conducted a lexical decision experiment in which words were presented either with separated or joined letters. To examine if the cost of letter segmentation occurs early in processing, we also manipulated a factor (i.e., word-frequency) that is posited to affect subsequent lexical processing. Results showed faster response times for the words composed of separated letters than for the words composed of joined letters. This effect occurred similarly for low- and high-frequency words. Thus, the present data offer some empirical support to Manso de Zuniga et al.’s (1991) idea of an early “cursive normalization” stage when processing joined-letters words. This pattern of data can be used to constrain the mapping of the visual input into letter and word units in future versions of models of visual word recognition.


1988 ◽  
Vol 40 (4) ◽  
pp. 757-770 ◽  
Author(s):  
J. M. Wilding

Two experiments are reported that examined the joint effects of word frequency and stimulus quality in the context of a lexical decision task. In the first experiment the interval between response to a stimulus and onset of the next stimulus was 0.8 sec, and the effect of the two factors was additive. In the second this interval was 3.3 sec, and the effect of reducing stimulus quality was greater for infrequent words than for frequent words. This is similar to the result of Norris (1984). The inability of current models of word recognition to explain this finding is discussed.


Psihologija ◽  
2010 ◽  
Vol 43 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Jelena Havelka ◽  
Clive Frankish

Case mixing is a technique that is used to investigate the perceptual processes involved in visual word recognition. Two experiments examined the effect of case mixing on lexical decision latencies. The aim of these experiments was to establish whether different case mixing patterns would interact with the process of appropriate visual segmentation and phonological assembly in word reading. In the first experiment, case mixing had a greater effect on response times to words when it led to visual disruption of the multi-letter graphemes (MLGs) as well as the overall word shape (e.g. pLeAd), compared to when it disrupted overall word shape only (e.g. plEAd). A second experiment replicated this finding with words in which MLGs represent either the vowel (e.g. bOaST vs. bOAst) or the consonant sound (e.g. sNaCK vs. sNAcK). These results confirm that case mixing can have different effect depending on the type of orthographic unit that is broken up by the manipulation. They demonstrate that graphemes are units that play an important role in visual word recognition, and that manipulation of their presentation by case mixing will have a significant effect on response latencies to words in a lexical decision task. As such these findings need to be taken into account by the models of visual word recognition.


Sign in / Sign up

Export Citation Format

Share Document