Necessary and sufficient conditions for exponential stability of a family of generalized Liénard differential equations

2009 ◽  
Vol 25 (1) ◽  
pp. 17-24
Author(s):  
A.A. Zevin ◽  
M.A. Pinsky
2000 ◽  
Vol 7 (3) ◽  
pp. 577-584
Author(s):  
Jitsuro Sugie ◽  
Mitsuru Iwasaki

Abstract Our concern is to consider delay differential equations of Euler type. Necessary and sufficient conditions for the oscillation of solutions are given. The results extend some famous facts about Euler differential equations without delay.


Analysis ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 97-105 ◽  
Author(s):  
Sandra Pinelas ◽  
Shyam S. Santra

AbstractIn this work, necessary and sufficient conditions are obtained such that every solution of nonlinear neutral first-order differential equations with several delays of the form\bigl{(}x(t)+r(t)x(t-\tau)\bigr{)}^{\prime}+\sum_{i=1}^{m}\phi_{i}(t)H\bigl{(}% x(t-\sigma_{i})\bigr{)}=f(t)is oscillatory or tends to zero as {t\rightarrow\infty.} This problem is considered in various ranges of the neutral coefficient r. Finally, some illustrating examples are presented to show that feasibility and effectiveness of main results.


1990 ◽  
Vol 1 (3) ◽  
pp. 189-216 ◽  
Author(s):  
G. W. Bluman ◽  
S. Kumei

Simple and systematic algorithms for relating differential equations are given. They are based on comparing the local symmetries admitted by the equations. Comparisons of the infinitesimal generators and their Lie algebras of given and target equations lead to necessary conditions for the existence of mappings which relate them. Necessary and sufficient conditions are presented for the existence of invertible mappings from a given nonlinear system of partial differential equations to some linear system of equations with examples including the hodograph and Legendre transformations, and the linearizations of a nonlinear telegraph equation, a nonlinear diffusion equation, and nonlinear fluid flow equations. Necessary and sufficient conditions are also given for the existence of an invertible point transformation which maps a linear partial differential equation with variable coefficients to a linear equation with constant coefficients. Other types of mappings are also considered including the Miura transformation and the invertible mapping which relates the cylindrical KdV and the KdV equations.


Sign in / Sign up

Export Citation Format

Share Document