distributed delay
Recently Published Documents


TOTAL DOCUMENTS

680
(FIVE YEARS 211)

H-INDEX

37
(FIVE YEARS 7)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 224
Author(s):  
Paola Rubbioni

In this paper, we study a semilinear integro-differential inclusion in Banach spaces, under the action of infinitely many impulses. We provide the existence of mild solutions on a half-line by means of the so-called extension-with-memory technique, which consists of breaking down the problem in an iterate sequence of non-impulsive Cauchy problems, each of them originated by a solution of the previous one. The key that allows us to employ this method is the definition of suitable auxiliary set-valued functions that imitate the original set-valued nonlinearity at any step of the problem’s iteration. As an example of application, we deduce the controllability of a population dynamics process with distributed delay and impulses. That is, we ensure the existence of a pair trajectory-control, meaning a possible evolution of a population and of a feedback control for a system that undergoes sudden changes caused by external forces and depends on its past with fading memory.


Author(s):  
Mohammed D. Kassim ◽  
Nasser-eddine Tatar

Abstract A Halanay inequality with distributed delay of non-convolution type is considered. We establish a decay of solutions as a Mittag-Leffler function composed with a logarithmic function. A general sufficient condition is found and a large class of admissible retardation kernels is provided. This needs the preparation of several lemmas on properties of the Hadamard derivative and some basic fractional differential problems with this kind of derivative. The obtained result is then applied to a Hopfield neural network system to discuss its stability.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009698
Author(s):  
Måns Unosson ◽  
Marco Brancaccio ◽  
Michael Hastings ◽  
Adam M. Johansen ◽  
Bärbel Finkenstädt

We propose a stochastic distributed delay model together with a Markov random field prior and a measurement model for bioluminescence-reporting to analyse spatio-temporal gene expression in intact networks of cells. The model describes the oscillating time evolution of molecular mRNA counts through a negative transcriptional-translational feedback loop encoded in a chemical Langevin equation with a probabilistic delay distribution. The model is extended spatially by means of a multiplicative random effects model with a first order Markov random field prior distribution. Our methodology effectively separates intrinsic molecular noise, measurement noise, and extrinsic noise and phenotypic variation driving cell heterogeneity, while being amenable to parameter identification and inference. Based on the single-cell model we propose a novel computational stability analysis that allows us to infer two key characteristics, namely the robustness of the oscillations, i.e. whether the reaction network exhibits sustained or damped oscillations, and the profile of the regulation, i.e. whether the inhibition occurs over time in a more distributed versus a more direct manner, which affects the cells’ ability to phase-shift to new schedules. We show how insight into the spatio-temporal characteristics of the circadian feedback loop in the suprachiasmatic nucleus (SCN) can be gained by applying the methodology to bioluminescence-reported expression of the circadian core clock gene Cry1 across mouse SCN tissue. We find that while (almost) all SCN neurons exhibit robust cell-autonomous oscillations, the parameters that are associated with the regulatory transcription profile give rise to a spatial division of the tissue between the central region whose oscillations are resilient to perturbation in the sense that they maintain a high degree of synchronicity, and the dorsal region which appears to phase shift in a more diversified way as a response to large perturbations and thus could be more amenable to entrainment.


Author(s):  
Kalyan Manna ◽  
khalid hattaf

In this paper, we formulate a generalized hepatitis B virus (HBV) infection model with two modes of infection transmission and adaptive immunity, and investigate its dynamical properties. Both the virus-to-cell and cell-to-cell infection transmissions are modeled by general functions which satisfy some biologically motivated assumptions. Furthermore, the model incorporates three distributed time delays for the production of active infected hepatocytes, mature capsids and virions. The well-posedness of the proposed model is established by showing the non-negativity and boundedness of solu- tions. Five equilibria of the model are identified in terms of five threshold parameters R0, R1, R2, R3 and R4. Further, the global stability analysis of each equilibrium under certain conditions is carried out by employing suitable Lyapunov function and LaSalle’s invariance principle. Finally, we present an example with numerical simulations to il- lustrate the applicability of our study. Nonetheless, the results obtained in this study are valid for a wide class of HBV infection models.


Author(s):  
Driss Kiouach ◽  
Yassine Sabbar

This paper reports novel theoretical and analytical results for a perturbed version of a SIR model with Gamma-distributed delay. Notably, our epidemic model is represented by Itô–Lévy stochastic differential equations in order to simulate sudden and unexpected external phenomena. By using some new and ameliorated mathematical approaches, we study the long-run characteristics of the perturbed delayed model. Within this scope, we give sufficient conditions for two interesting asymptotic properties: extinction and persistence of the epidemic. One of the most interesting results is that the dynamics of the stochastic model are closely related to the intensities of white noises and Lévy jumps, which can give us a good insight into the evolution of the epidemic in some unexpected situations. Our work complements the results of some previous investigations and provides a new approach to predict and analyze the dynamic behavior of epidemics with distributed delay. For illustrative purposes, numerical examples are presented for checking the theoretical study.


Author(s):  
Marius Winkler ◽  
Grégory Dumont ◽  
Eckehard Schöll ◽  
Boris Gutkin

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3037
Author(s):  
Eva Kaslik ◽  
Mihaela Neamţu ◽  
Loredana Flavia Vesa

The present paper proposes a five-dimensional mathematical model for studying the labor market, focusing on unemployment, migration, fixed term contractors, full time employment and the number of available vacancies. The distributed time delay is considered in the rate of change of available vacancies that depends on the past regular employment levels. The non-dimensional mathematical model is introduced and the existence of the equilibrium points is analyzed. The positivity and boundedness of solutions are provided and global asymptotic stability findings are presented both for the employment free equilibrium and the positive equilibrium. The numerical simulations support the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document