On the limit cycles for a class of generalized Liénard differential systems

2021 ◽  
pp. 1-0
Author(s):  
Zouhair Diab ◽  
Juan L. G. Guirao ◽  
Juan A. Vera
2018 ◽  
Vol 18 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Jaume Giné ◽  
Jaume Llibre ◽  
Claudia Valls

AbstractIn this paper we characterize all cubic polynomial differential systems in the plane having two circles as invariant algebraic limit cycles.


2011 ◽  
Vol 2011 ◽  
pp. 1-7
Author(s):  
Khalil I. T. Al-Dosary

This paper is an extension to the recent results presented by M. Sabatini about the existence and uniqueness of limit cycles of a certain class of planar differential systems in order to include other new classes. A concrete example exhibiting the applicability of the result is introduced.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


Author(s):  
T. R. Blows ◽  
N. G. Lloyd

SynopsisTwo-dimensional differential systemsare considered, where P and Q are polynomials. The question of interest is the maximum possible numberof limit cycles of such systems in terms of the degree of P and Q. An algorithm is described for determining a so-called focal basis; this can be implemented on a computer. Estimates can then be obtained for the number of small-amplitude limit cycles. The technique is applied to certain cubic systems; a class of examples with exactly five small-amplitude limit cycles is constructed. Quadratic systems are also considered.


Sign in / Sign up

Export Citation Format

Share Document