scholarly journals Limit Cycles of a Class of Perturbed Differential Systems via the First-Order Averaging Method

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tao Li ◽  
Jaume Llibre

<p style='text-indent:20px;'>In this paper we study the maximum number of limit cycles bifurcating from the periodic orbits of the center <inline-formula><tex-math id="M1">\begin{document}$ \dot x = -y((x^2+y^2)/2)^m, \dot y = x((x^2+y^2)/2)^m $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ m\ge0 $\end{document}</tex-math></inline-formula> under discontinuous piecewise polynomial (resp. polynomial Hamiltonian) perturbations of degree <inline-formula><tex-math id="M3">\begin{document}$ n $\end{document}</tex-math></inline-formula> with the discontinuity set <inline-formula><tex-math id="M4">\begin{document}$ \{(x, y)\in\mathbb{R}^2: xy = 0\} $\end{document}</tex-math></inline-formula>. Using the averaging theory up to any order <inline-formula><tex-math id="M5">\begin{document}$ N $\end{document}</tex-math></inline-formula>, we give upper bounds for the maximum number of limit cycles in the function of <inline-formula><tex-math id="M6">\begin{document}$ m, n, N $\end{document}</tex-math></inline-formula>. More importantly, employing the higher order averaging method we provide new lower bounds of the maximum number of limit cycles for several types of piecewise polynomial systems, which improve the results of the previous works. Besides, we explore the effect of 4-star-symmetry on the maximum number of limit cycles bifurcating from the unperturbed periodic orbits. Our result implies that 4-star-symmetry almost halves the maximum number.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Ziguo Jiang

We study the number of limit cycles for the quadratic polynomial differential systemsx˙=-y+x2,y˙=x+xyhaving an isochronous center with continuous and discontinuous cubic polynomial perturbations. Using the averaging theory of first order, we obtain that 3 limit cycles bifurcate from the periodic orbits of the isochronous center with continuous perturbations and at least 7 limit cycles bifurcate from the periodic orbits of the isochronous center with discontinuous perturbations. Moreover, this work shows that the discontinuous systems have at least 4 more limit cycles surrounding the origin than the continuous ones.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850175
Author(s):  
Fangfang Jiang ◽  
Zhicheng Ji ◽  
Yan Wang

In this paper, we investigate the number of limit cycles for two classes of discontinuous Liénard polynomial perturbed differential systems. By the second-order averaging theorem of discontinuous differential equations, we provide several criteria on the lower upper bounds for the maximum number of limit cycles. The results show that the second-order averaging theorem of discontinuous differential equations can predict more limit cycles than the first-order one.


Author(s):  
Jaume Llibre ◽  
Clàudia Valls

We study the number of limit cycles of polynomial differential systems of the form where g 1 , f 1 , g 2 and f 2 are polynomials of a given degree. Note that when g 1 ( x )= f 1 ( x )=0, we obtain the generalized polynomial Liénard differential systems. We provide an accurate upper bound of the maximum number of limit cycles that the above system can have bifurcating from the periodic orbits of the linear centre , using the averaging theory of first and second order.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Mohamed Abdalla ◽  
Sahar Ahmed Idris ◽  
Ibrahim Mekawy

In light of the previous recent studies by Jaume Llibre et al. that dealt with the finite cycles of generalized differential Kukles polynomial systems using the first- and second-order mean theorem such as (Nonlinear Anal., 74, 1261–1271, 2011) and (J. Dyn. Control Syst., vol. 21, 189–192, 2015), in this work, we provide upper bounds for the maximum number of limit cycles bifurcating from the periodic orbits of Hamiltonian system using the averaging theory of first order.


2014 ◽  
Vol 24 (03) ◽  
pp. 1450035 ◽  
Author(s):  
Shimin Li ◽  
Yulin Zhao

In this paper, we bound the number of limit cycles for a class of cubic reversible isochronous system inside the class of all cubic polynomial differential systems. By applying the averaging method of second order to this system, it is proved that at most eight limit cycles can bifurcate from the period annulus. Moreover, this bound is sharp.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050051
Author(s):  
Jaume Llibre ◽  
Arefeh Nabavi ◽  
Marzieh Mousavi

Consider the class of reversible quadratic systems [Formula: see text] with [Formula: see text]. These quadratic polynomial differential systems have a center at the point [Formula: see text] and the circle [Formula: see text] is one of the periodic orbits surrounding this center. These systems can be written into the form [Formula: see text] with [Formula: see text]. For all [Formula: see text] we prove that the averaging theory up to seventh order applied to this last system perturbed inside the whole class of quadratic polynomial differential systems can produce at most two limit cycles bifurcating from the periodic orbits surrounding the center (0,0) of that system. Up to now this result was only known for [Formula: see text] (see Li, 2002; Liu, 2012).


2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Haihua Liang ◽  
Jaume Llibre ◽  
Joan Torregrosa

AbstractThis article is about the weak 16th Hilbert problem, i.e. we analyze how many limit cycles can bifurcate from the periodic orbits of a given polynomial differential center when it is perturbed inside a class of polynomial differential systems. More precisely, we consider the uniform isochronous centersof degree


2013 ◽  
Vol 23 (03) ◽  
pp. 1350048 ◽  
Author(s):  
JAUME LLIBRE ◽  
CLAUDIA VALLS

We study the number of limit cycles of the polynomial differential systems of the form [Formula: see text] where g1(x) = εg11(x) + ε2g12(x) + ε3g13(x), g2(x) = εg21(x) + ε2g22(x) + ε3g23(x) and f(x) = εf1(x) + ε2 f2(x) + ε3 f3(x) where g1i, g2i, f2i have degree k, m and n respectively for each i = 1, 2, 3, and ε is a small parameter. Note that when g1(x) = 0 we obtain the generalized Liénard polynomial differential systems. We provide an upper bound of the maximum number of limit cycles that the previous differential system can have bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = -x using the averaging theory of third order.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550131 ◽  
Author(s):  
Fangfang Jiang ◽  
Junping Shi ◽  
Jitao Sun

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = -y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.


Sign in / Sign up

Export Citation Format

Share Document