Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method

2018 ◽  
Vol 26 (16) ◽  
pp. 1343-1356 ◽  
Author(s):  
Azher Jameel ◽  
G. A. Harmain
Author(s):  
Xiaowei Tang ◽  
Ying Jie ◽  
Maotian Luan

This study presents a numerical method for the seismic behavior assessment of liquefiable soil-structure interaction. In the method, the element-free Galerkin method (EFGM) is applied to simulate the behavior of the liquefiable sandy soil which will take place large permanent deformation under earthquake loading. The finite element method (FEM) is used to describe the behavior of the structure. Then, the EFGM and FEM are related by contact elements. The cyclic elasto-plastic constitutive model and updated Lagrangian large-deformation formulation are jointly adopted to establish the governing equations in order to take account for both physical and geometrical nonlinearities. The shape function is established by moving least squares method while hexahedral background cells are used. The essential boundary conditions are treated with the help of the penalty method. The coupled method can avoid the volumetric locking in the numerical computations using finite element method when non-uniform deformations happen. In order to assess the effectiveness and accuracy of the current procedure, numerical simulation of caisson-type quay wall subjected to earthquake motion is conducted.


Author(s):  
Ajay Kumar ◽  
Pankaj Shitole ◽  
Rajesh Ghosh ◽  
Rajeev Kumar ◽  
Arpan Gupta

Stress intensity factor and energy release rate are important parameters to understand the fracture behaviour of bone. The objective of this study is to predict stress intensity factor and energy release rate using finite element method, element-free Galerkin method, and extended finite element method and compare these results with the experimentally determined values. For experimental purpose, 20 longitudinally and transversely fractured single-edge notched bend specimens were prepared and tested according to ASTM standard. All specimens were tested using the universal testing machine. For numerical simulations (finite element method, element-free Galerkin method, and extended finite element method), two-dimensional model of cortical bone was developed by assuming plane strain condition. Material properties of the cortical bone were considered as anisotropic and homogeneous. The values obtained through finite element method, element-free Galerkin method, and extended finite element method are well corroborated to experimentally determined values and earlier published data. However, element-free Galerkin method and extended finite element method predict more accurate results as compared to finite element method. In the case of the transversely fractured specimen, the values of stress intensity factor and energy release rate were found to be higher as compared to the longitudinally fractured specimen, which shows consistency with earlier published data. This study also indicates element-free Galerkin method and extended finite element method predicted stress intensity factor and energy release rate results are more close to experimental results as compared to finite element method, and therefore, these methods can be used in the different field of biomechanics, particularly to predict bone fracture.


2010 ◽  
Vol 139-141 ◽  
pp. 1174-1177 ◽  
Author(s):  
Di Li ◽  
Jia Chuan Xu ◽  
Wen Qian Kang

The analysis for die forging forming problems with finite element method can lose considerable accuracy due to severely distortional meshes. The element-free Galerkin method is suitable for large deformation analysis and provides a higher rate of convergence than that of the conventional finite element methods. A rigid-plastic meshless method based on the element-free Galerkin method has been applied to die forging problems. The arc-tangent friction model is used to handle frictional contact and the penalty method is applied to impose the volumetric incompressibility conditions. By dividing all integration points set into the point subset of the rigid zones and the point subset of the plastic zones, nonsmoothness of the rigid-plastic constitutive relation can be eliminated. A die forging example has been analyzed to demonstrate the performance of the method.


1995 ◽  
Vol 17 (3) ◽  
pp. 186-195 ◽  
Author(s):  
T. Belytschko ◽  
D. Organ ◽  
Y. Krongauz

Sign in / Sign up

Export Citation Format

Share Document