interfacial cracks
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 38)

H-INDEX

23
(FIVE YEARS 3)

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Fuping Feng ◽  
Xu Han ◽  
Yu Suo ◽  
Heyuan Wang ◽  
Qinyou Ye ◽  
...  

Abstract Large-scale staged hydraulic fracturing stimulation technology is an effective method to increase shale oil and gas recovery. However, cracks will appear along with the cementing interface and expand under the drive of fluid while hydraulic fracturing, failing wellbore sealing. To solve this problem, the synchronous propagation model of hydraulic fractures and cementing interfacial cracks in hydraulic fracturing is established. The Newton iteration method and displacement discontinuity method are used to solve the propagation length of each fracture, and the effects of cement sheath parameters and fracture parameters on the interface failure range are studied. The results show that when multiple hydraulic fractures expand, the interfacial cracks are also affected by “stress shadow,” offering an asymmetric expansion, and the cementing interfacial cracks in the area between hydraulic fractures are easier to expand. The failure range of interface between the hydraulic fractures expands rapidly if the cement elastic modulus increases from 5 GPa to 10 GPa; while the cement elastic modulus is higher than 10 GPa, the failure area is mainly affected by the number of hydraulic fractures; the failure range is not affected by the number of hydraulic fractures if the hydraulic fracture spacing is less than 10 m or more than 30 m; while the crack spacing is between 10 m and 30 m, the more the number of hydraulic fractures, the easier it is to cause the interface failure range to increase and connect. The research results can provide a theoretical basis for the optimization of cement slurry systems and fracturing parameters.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012047
Author(s):  
Ziyan Pan ◽  
Mingduo Yuan ◽  
Zhenyu Zou ◽  
Weijian Zhang ◽  
Mingyue Du ◽  
...  

Abstract In this study, the fracture mechanisms of Cr-coated Zr4 alloy samples were studied by in-situ tensile testing with high-resolution observations. Both original sample and pre-oxidized sample were studied to study the effects of pre-oxidation on the cracking and failure behavior. For the Cr-coated Zr4 sample, with the increase of tensile strain, multiple surface cracks were dominant and less interfacial cracks were formed, indicating good interfacial strength of Cr coating. For the pre-oxidized samples, there was a thin oxide layer formed on the Cr coating surface, revealing improved oxidation resistance and protection effects. However, a brittle ZrCr2 diffusion layer was formed in the same while at the Cr/Zr4 interface underneath the Cr coating, which would lead to earlier micro-cracks formed under tensile stress and evidently degrade the interfacial strength. The findings in the study indicated the importance of optimizing coating microstructure in future study to avoid forming the above-mentioned brittle diffusion interlayer and the associated premature failure.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012088
Author(s):  
Mingduo Yuan ◽  
Ziyan Pan ◽  
Zhenyu Zou ◽  
Weijian Zhang ◽  
Mingyue Du ◽  
...  

Abstract In-situ three-point bending tests and finite element modeling based on the cohesive zone model were developed to study the stress evolution and cracking behavior of the Cr coated Zr-4 alloy for accident tolerant fuel claddings. The initiation and propagation of micro-cracks were captured by in-situ observation and predicted by the numerical simulation. The results showed that vertical cracks first initiated from the coating surface and propagated to the Cr/Zr4 interface. Under larger bending strain, interfacial cracks began to initiate from the vertical crack tips driven by large local stress concentration.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6533
Author(s):  
Guo-Jiun Shu ◽  
Cun-Jheng Huang ◽  
Wei-Xiang Chien ◽  
Pei Wang ◽  
Ming-Wei Wu

Powder metallurgy (PM) is a versatile process to manufacture nearly net-shaped metallic materials in industry. In this study, the PM process was used to fabricate two Fe-based laminated metal composites (LMCs), Fe-4Ni-3Cr-0.5Mo-0.5C/Fe and 410/304L. The results showed that after sintering, the LMCs were free of interfacial cracks and distortion, indicating that the PM process is a feasible means for producing these LMCs. In the Fe-4Ni-3Cr-0.5Mo-0.5C/Fe LMC, the diffusion of C resulted in the generation of a continuous pearlite layer between the Fe-4Ni-3Cr-0.5Mo-0.5C and Fe layers and a ferrite/pearlite mixture in the Fe layer. In the 410/304L LMC, the difference in the chemical potentials of C between the 304L and 410 layers led to the uphill diffusion of C from the 410 layer to the 304L layer. A continuous ferrite layer was thus formed near the interface of the 410 layer. Furthermore, a martensite layer of about 50 μm thickness was generated at the interface due to the high Cr and Ni content.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xianfeng Ma ◽  
Wenjie Zhang ◽  
Zejia Chen ◽  
Dong Yang ◽  
Jishen Jiang ◽  
...  

In situ tensile tests and crystal plasticity finite element modeling (CPFEM) were used to study the deformation and cracking behaviors of Cr-coated Zr-4 alloys for accident tolerant fuel claddings under tension. Based on the experimental results, vertical cracks in the coating generally initiated from the interface between the coating and the substrate, and expanded to the top surface of the coating. In addition, under large deformation, the vertical cracks also resulted in interfacial cracks that initiated from the cracking tips and propagated along the interface. According to the CPFEM, the cracking behaviors were mainly caused by the substantial stress concentration at the coating/substrate interface and at the grain boundaries in the Cr coating. The preferential crack initiation was related to the strain localization associated with grain orientation variation and strain mismatch.


2021 ◽  
pp. 108128652110149
Author(s):  
Ni An ◽  
Tianshu Song ◽  
Gangling Hou

The purpose of this paper is to evaluate the stress concentration at the tip of a permeable interfacial crack near an eccentric elliptical hole in piezoelectric bi-materials under anti-plane shearing. Fracture analysis is performed by Green’s function method and the conformal mapping method, which are used to solve the boundary conditions problem. The mechanical model of the interfacial crack is constructed by interface-conjunction and crack-deviation techniques so that the crack problem is simplified as solving a series of the first kind of Fredholm’s integral equations, from which the dynamic stress intensity factors (DSIFs) at the inner and the outer crack-tips can be derived. The validity of the present method is verified by comparing with a crack emerging from the edge of a circular hole as a reference. Numerical cases reveal parametric dependence of DSIFs on the geometry of eccentric elliptical holes and interfacial cracks, the characteristics of the incident wave, the equivalent piezoelectric elastic modulus and piezoelectric parameters. The results illustrate that the eccentric distance has a great effect on the stress concentration at the crack tip, which may be harmful to the normal service of piezoelectric devices and materials. In addition, the method proposed in this paper can also deal with non-eccentric problems and has wider applicability.


Sign in / Sign up

Export Citation Format

Share Document