liquefiable soil
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 71)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 1-33
Author(s):  
D. Chavan ◽  
T.G. Sitharam ◽  
P. Anbazhagan

Propagation of the earthquake motion towards the ground surface alters both the acceleration and frequency content of the motion. Acceleration time record and Fourier amplitude spectrum of the motion reveal changes in the acceleration and frequency content. However, Fourier amplitude spectrum fails to give frequency-time variation. Wavelet transform overcomes this difficulty. In the present study, site response analysis of a liquefiable soil domain has been investigated employing wavelet transform. Three earthquake motions with distinct predominant frequencies are considered. It is revealed that the moment soil undergoes initial liquefaction, it causes a spike in the acceleration time history. Frequency of the spikes is found to be greater than the predominant frequency of the acceleration-time history recorded at the ground surface from the analysis. Interestingly, the spikes belong to the sharp tips of the shear stress-shear strain curve. Immediately after the spike, acceleration deamplification is observed. Post-liquefaction deamplification (filtering) of the frequency components is also observed.


2022 ◽  
Author(s):  
Fereshteh Rahmani ◽  
Seyed Mahdi Hosseini

Abstract Liquefaction occurs in a loose and saturated sand layer, induces quite large damages to infrastructures, the importance of liquefaction mitigation has been emphasized to minimize earthquake disasters for many years. Many kinds of ground improvement techniques based on various improvement principles have been developed for liquefaction mitigation. Among them, deep mixing method with grid pattern was developed for liquefaction mitigation in the 1990s, where the grid of stabilized column walls functions to restrict the generation of excess pore pressure by confining the soil particle movement during earthquake. In this study, a parametric study of the grid-form deep mixing wall is performed using numerical modeling with GID+OpenSees interface V2.6.0. The finite element method with a three-dimensional analysis model can be used to estimate the foundation settlement over liquefiable soil layer. The validity of the developed model was evaluated by comparing the results obtained from the model with the results of numerical studies and the experimental centrifuge test to investigate the effect of deep mixing grid wall on the settlement and generation of excess pore pressure ratio of liquefiable soil. Based on the analysis, the settlement for improved soil was 69% smaller than the settlement for unimproved soil. The results also indicated that the grid wall space, relative density, and stiffness ratio between soil-cement columns and enclosed soil plays an important role in the occurrence of liquefaction and volumetric strains.


2021 ◽  
Author(s):  
Onur Selcukhan ◽  
Abdullah Ekinci

Abstract This study proposes an improved and precise liquefaction risk index for the evaluation and translation of outcomes into maps to establish susceptible liquefiable areas. Cyprus is the third largest and populated island in the Mediterranean Sea, which is rapidly expanding in every way. Significant infrastructures, such as hotels, educational institutions, and large residential complexes are being built. Historically, two major earthquakes with magnitudes of 6.5 Mw struck the island in 1953 and 1996. Potential liquefaction areas have been detected on the island's east coast as a result of these significant earthquakes. In this case study, the liquefaction potential of Tuzla and Long Beach in the northern part of Cyprus is estimated using the standard penetration test (SPT) data from more than 200 boreholes at different locations at the sites. The overall results are presented in a liquefaction risk index obtained from the factor of safety (FS) coefficient. It is clear that both study areas are susceptible to liquefaction. Thus, risk index maps are prepared to identify susceptible liquefiable areas. In addition, the average factor of the safety line was introduced for both sites to create a correlation between the liquefaction risk area and FS values of every borehole. It is clear that the adopted approach precisely provides the suspected depth of the liquefiable soil layer when compared with the risk index maps. Additionally, the results prove that the liquefaction potential must be considered during the design stage of new infrastructure in these areas.


2021 ◽  
Vol 11 (23) ◽  
pp. 11271
Author(s):  
Junding Liu ◽  
Rongjian Li ◽  
Shibin Zhang ◽  
Weishi Bai ◽  
Ze Li

To avoid large deformation, resulting from liquefaction, in inclined and deeply deposited liquefiable soil, it is necessary to design economical and reasonable reinforcement schemes. A reinforcement scheme employing subarea long-short gravel piles was proposed, and it was successfully applied in the embankment construction of the Aksu-kashgar highway. To reveal its underlying mechanism and effect on the seismic performance of the highway, the dynamic responses of natural foundation and two kinds of reinforced foundations were analyzed and compared under this scheme, using the program FEMEPDYN. Results showed that both the seismic subsidence and the excess pore pressure ratios were far less in the foundation reinforced with isometric gravel piles and in the foundation reinforced with subarea long-short gravel piles, compared with that in natural foundation. Therefore, the potential hazards of liquefaction were overcome in these two kinds of reinforced foundations. Furthermore, it was obvious that the shielding region only formed within the foundation reinforced with subarea long-short gravel piles. With the shielding effect, the proposed reinforcement scheme employing subarea long-short gravel piles not only eliminated liquefaction in deeply deposited liquefiable soil, but it also demonstrated an outstanding advantage in that the total length of gravel piles used was greatly reduced compared to the total length in the isometric gravel piles scheme and the interphase long-short gravel piles.


Author(s):  
T.S. Thum ◽  
A. Yerro ◽  
A. Saade ◽  
E. Ye ◽  
K.J. Wissmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document